The fine-grained structure in magnesium alloy containing long-period stacking order phase

Tatsuya Morikawa, Kenji Kaneko, Kenji Higashida, Daisuke Kinoshita, Masanori Takenaka, Yoshihito Kawamura

    Research output: Contribution to journalArticlepeer-review

    32 Citations (Scopus)

    Abstract

    Microstructural characteristics of warm-extruded magnesium alloy (Mg 97Zn1Y2) containing long-period stacking order (LPSO) phase has been investigated using SEM and TEM as the first step to understand the effect of warm-extrusion on its mechanical property. Particular attention has been paid on the microstructural change in the hep matrix caused by warm extrusion. The microstructure developed by the warm extrusion at 623 K consists of elongated grains with fine-lamellae of LPSO phase and fine-grained matrix of hep phase. The grain size of the hep matrix observed on the cross section perpendicular to the extruding direction was about 1 urn, indicating that remarkable grain refinement was occurred during the extrusion since the grain size of as-cast alloy was around 0.5 mm. Those fine grains in the extruded alloy included abundant stacking faults, and HAADF-STEM observation revealed that the stacking faults were enriched by Zn and Y. In addition, grain boundaries were also enriched by those solute elements, which must contribute to stabilizing such fine- grained structure.

    Original languageEnglish
    Pages (from-to)1294-1297
    Number of pages4
    JournalMaterials Transactions
    Volume49
    Issue number6
    DOIs
    Publication statusPublished - Jun 2008

    All Science Journal Classification (ASJC) codes

    • General Materials Science
    • Condensed Matter Physics
    • Mechanics of Materials
    • Mechanical Engineering

    Fingerprint

    Dive into the research topics of 'The fine-grained structure in magnesium alloy containing long-period stacking order phase'. Together they form a unique fingerprint.

    Cite this