TY - JOUR
T1 - The Epstein-Barr virus Pol catalytic subunit physically interacts with the BBLF4-BSLF1-BBLF2/3 complex
AU - Fujii, Ken
AU - Yokoyama, Naoaki
AU - Kiyono, Tohru
AU - Kuzushima, Kiyotaka
AU - Homma, Michio
AU - Nishiyama, Yukihiro
AU - Fujita, Masatoshi
AU - Tsurumi, Tatsuya
PY - 2000
Y1 - 2000
N2 - The Epstein-Barr virus (EBV)-encoded replication proteins that account for the basic reactions at the replication fork are thought to be the EBV Pol holoenzyme, consisting of the BALF5 Pol catalytic and the BMRF1 Pol accessory subunits, the putative helicase-primase complex, comprising the BBLF4, BSLF1, and BBLF2/3 proteins, and the BALF2 single-stranded DNA-binding protein. Immunoprecipitation analyses using anti-BSLF1 or anti-BBLF2/3 protein- specific antibody with clarified lysates of B95-8 cells in a viral productive cycle suggested that the EBV Pol holoenzyme physically interacts with the BBLF4-BSLF1-BBLF2/3 complex to form a large complex. Although the complex was stable in 500 mM NaCl and 1% NP-40, the BALF5 protein became dissociated in the presence of 0.1% sodium dodecyl sulfate. Experiments using lysates from insect cells superinfected with combinations of recombinant baculoviruses capable of expressing each of viral replication proteins showed that not the BMRF1 Pol accessory subunit but rather the BALF5 Pol catalytic subunit directly interacts with the BBLF4-BSLF1-BBLF2/3 complex. Furthermore, double infection with pairs of recombinant viruses revealed that each component of the BBLF4-BSLF1-BBLF2/3 complex makes contact with the BALF5 Pol catalytic subunit. The interactions of the EBV DNA polymerase with the EBV putative helicase-primase complex warrant particular attention because they are thought to coordinate leading- and lagging-strand DNA synthesis at the replication fork.
AB - The Epstein-Barr virus (EBV)-encoded replication proteins that account for the basic reactions at the replication fork are thought to be the EBV Pol holoenzyme, consisting of the BALF5 Pol catalytic and the BMRF1 Pol accessory subunits, the putative helicase-primase complex, comprising the BBLF4, BSLF1, and BBLF2/3 proteins, and the BALF2 single-stranded DNA-binding protein. Immunoprecipitation analyses using anti-BSLF1 or anti-BBLF2/3 protein- specific antibody with clarified lysates of B95-8 cells in a viral productive cycle suggested that the EBV Pol holoenzyme physically interacts with the BBLF4-BSLF1-BBLF2/3 complex to form a large complex. Although the complex was stable in 500 mM NaCl and 1% NP-40, the BALF5 protein became dissociated in the presence of 0.1% sodium dodecyl sulfate. Experiments using lysates from insect cells superinfected with combinations of recombinant baculoviruses capable of expressing each of viral replication proteins showed that not the BMRF1 Pol accessory subunit but rather the BALF5 Pol catalytic subunit directly interacts with the BBLF4-BSLF1-BBLF2/3 complex. Furthermore, double infection with pairs of recombinant viruses revealed that each component of the BBLF4-BSLF1-BBLF2/3 complex makes contact with the BALF5 Pol catalytic subunit. The interactions of the EBV DNA polymerase with the EBV putative helicase-primase complex warrant particular attention because they are thought to coordinate leading- and lagging-strand DNA synthesis at the replication fork.
UR - http://www.scopus.com/inward/record.url?scp=0034100143&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034100143&partnerID=8YFLogxK
U2 - 10.1128/JVI.74.6.2550-2557.2000
DO - 10.1128/JVI.74.6.2550-2557.2000
M3 - Article
C2 - 10684269
AN - SCOPUS:0034100143
SN - 0022-538X
VL - 74
SP - 2550
EP - 2557
JO - Journal of virology
JF - Journal of virology
IS - 6
ER -