TY - JOUR
T1 - The effect of an octacalcium phosphate co-precipitated gelatin composite on the repair of critical-sized rat calvarial defects
AU - Handa, T.
AU - Anada, T.
AU - Honda, Y.
AU - Yamazaki, H.
AU - Kobayashi, K.
AU - Kanda, N.
AU - Kamakura, S.
AU - Echigo, S.
AU - Suzuki, O.
N1 - Funding Information:
This study was supported in part by grants in aid ( 17076001 , 19390490 , 23390450 , 23659909 and 23106010 ) from the Ministry of Education, Science, Sports, and Culture of Japan and the Suzuken Memorial Foundation .
PY - 2012/3
Y1 - 2012/3
N2 - This study was designed to investigate the extent to which an octacalcium phosphate/gelatin (OCP/Gel) composite can repair rat calvarial critical-sized defects (CSD). OCP crystals were grown with various concentrations of gelatin molecules and the OCP/Gel composites were characterized by chemical analysis, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED) and mercury intrusion porosimetry. The OCP/Gel composite disks received vacuum dehydrothermal treatment, were implanted in Wistar rat calvarial CSD for 4, 8 and 16 weeks, and then subjected to radiologic, histologic, histomorphometric and histochemical assessment. The attachment of mouse bone marrow stromal ST-2 cells on the disks of the OCP/Gel composites was also examined after 1 day of incubation. OCP/Gel composites containing 24 wt.%, 31 wt.% and 40 wt.% of OCP and with approximate pore sizes of 10-500 μm were obtained. Plate-like crystals were observed closely associated with the Gel matrices. TEM, XRD, FTIR and SAED confirmed that the plate-like crystals were identical to those of the OCP phase, but contained a small amount of sphere-like amorphous material adjacent to the OCP crystals. The OCP (40 wt.%)/Gel composite repaired 71% of the CSD in conjunction with material degradation by osteoclastic cells, which reduced the percentage of the remaining implant to less than 3% within 16 weeks. Of the seeded ST-2 cells, 60-70% were able to migrate and attach to the OCP/Gel composites after 1 day of incubation, regardless of the OCP content. These results indicate that an OCP/Gel composite can repair rat calvarial CSD very efficiently and has favorable biodegradation characteristics. Therefore, it is hypothesized that host osteoblastic cells can easily migrate into an OCP/Gel composite.
AB - This study was designed to investigate the extent to which an octacalcium phosphate/gelatin (OCP/Gel) composite can repair rat calvarial critical-sized defects (CSD). OCP crystals were grown with various concentrations of gelatin molecules and the OCP/Gel composites were characterized by chemical analysis, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED) and mercury intrusion porosimetry. The OCP/Gel composite disks received vacuum dehydrothermal treatment, were implanted in Wistar rat calvarial CSD for 4, 8 and 16 weeks, and then subjected to radiologic, histologic, histomorphometric and histochemical assessment. The attachment of mouse bone marrow stromal ST-2 cells on the disks of the OCP/Gel composites was also examined after 1 day of incubation. OCP/Gel composites containing 24 wt.%, 31 wt.% and 40 wt.% of OCP and with approximate pore sizes of 10-500 μm were obtained. Plate-like crystals were observed closely associated with the Gel matrices. TEM, XRD, FTIR and SAED confirmed that the plate-like crystals were identical to those of the OCP phase, but contained a small amount of sphere-like amorphous material adjacent to the OCP crystals. The OCP (40 wt.%)/Gel composite repaired 71% of the CSD in conjunction with material degradation by osteoclastic cells, which reduced the percentage of the remaining implant to less than 3% within 16 weeks. Of the seeded ST-2 cells, 60-70% were able to migrate and attach to the OCP/Gel composites after 1 day of incubation, regardless of the OCP content. These results indicate that an OCP/Gel composite can repair rat calvarial CSD very efficiently and has favorable biodegradation characteristics. Therefore, it is hypothesized that host osteoblastic cells can easily migrate into an OCP/Gel composite.
UR - http://www.scopus.com/inward/record.url?scp=84856556347&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84856556347&partnerID=8YFLogxK
U2 - 10.1016/j.actbio.2011.12.002
DO - 10.1016/j.actbio.2011.12.002
M3 - Article
C2 - 22198138
AN - SCOPUS:84856556347
SN - 1742-7061
VL - 8
SP - 1190
EP - 1200
JO - Acta Biomaterialia
JF - Acta Biomaterialia
IS - 3
ER -