TY - JOUR
T1 - The antitumor effect of a novel angiogenesis inhibitor (an octahydronaphthalene derivative) targeting both VEGF receptor and NF-κB pathway
AU - Watari, Kosuke
AU - Nakamura, Mamiyo
AU - Fukunaga, Yuichi
AU - Furuno, Ayana
AU - Shibata, Tomohiro
AU - Kawahara, Akihiko
AU - Hosoi, Fumihito
AU - Kuwano, Takashi
AU - Kuwano, Michihiko
AU - Ono, Mayumi
PY - 2012/7/15
Y1 - 2012/7/15
N2 - Development of a novel type of angiogenesis inhibitor will be essential for further improvement of therapeutics against cancer patients. We examined whether an octahydronaphthalene derivative, AMF-26, which was screened as an inhibitor of intercellular adhesion molecule-1 (ICAM-1) production stimulated by inflammatory stimuli in vascular endothelial cells, could block angiogenesis in response to vascular endothelial growth factor (VEGF) and/or inflammatory cytokines. Low dose AMF-26 effectively inhibited the tumor necrosis factor-α (TNF-α)- or the interleukin-1β (IL-1β)-induced production of ICAM-1 in human umbilical vascular endothelial cells (HUVECs). We found that the TNF-α-induced phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) and nuclear translocation of p65 were impaired by AMF-26 in both endothelial cells and cancer cells. AMF-26 was found to inhibit the phosphorylation of VEGF receptor 1 (VEGFR1), VEGFR2 and the downstream signaling molecules Akt, extracellular signal-regulated kinase (ERK)1/2 stimulated by VEGF in HUVECs. Therefore, the VEGF-induced proliferation, migration and tube formation of vascular endothelial cells was highly susceptible to inhibition by AMF-26. Oral administration of AMF-26 significantly blocked VEGF- or IL-1β-induced angiogenesis in the mouse cornea, and also tumor angiogenesis and growth. Together, our results indicate that AMF-26 inhibits angiogenesis through suppression of both VEGFR1/2 and nuclear factor-κB (NF-κB) signaling pathways when stimulated by VEGF or inflammatory cytokines. AMF-26 could be a promising novel candidate drug for cancer treatments.
AB - Development of a novel type of angiogenesis inhibitor will be essential for further improvement of therapeutics against cancer patients. We examined whether an octahydronaphthalene derivative, AMF-26, which was screened as an inhibitor of intercellular adhesion molecule-1 (ICAM-1) production stimulated by inflammatory stimuli in vascular endothelial cells, could block angiogenesis in response to vascular endothelial growth factor (VEGF) and/or inflammatory cytokines. Low dose AMF-26 effectively inhibited the tumor necrosis factor-α (TNF-α)- or the interleukin-1β (IL-1β)-induced production of ICAM-1 in human umbilical vascular endothelial cells (HUVECs). We found that the TNF-α-induced phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) and nuclear translocation of p65 were impaired by AMF-26 in both endothelial cells and cancer cells. AMF-26 was found to inhibit the phosphorylation of VEGF receptor 1 (VEGFR1), VEGFR2 and the downstream signaling molecules Akt, extracellular signal-regulated kinase (ERK)1/2 stimulated by VEGF in HUVECs. Therefore, the VEGF-induced proliferation, migration and tube formation of vascular endothelial cells was highly susceptible to inhibition by AMF-26. Oral administration of AMF-26 significantly blocked VEGF- or IL-1β-induced angiogenesis in the mouse cornea, and also tumor angiogenesis and growth. Together, our results indicate that AMF-26 inhibits angiogenesis through suppression of both VEGFR1/2 and nuclear factor-κB (NF-κB) signaling pathways when stimulated by VEGF or inflammatory cytokines. AMF-26 could be a promising novel candidate drug for cancer treatments.
UR - http://www.scopus.com/inward/record.url?scp=84856711611&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84856711611&partnerID=8YFLogxK
U2 - 10.1002/ijc.26356
DO - 10.1002/ijc.26356
M3 - Article
C2 - 21826646
AN - SCOPUS:84856711611
SN - 0020-7136
VL - 131
SP - 310
EP - 321
JO - International Journal of Cancer
JF - International Journal of Cancer
IS - 2
ER -