TY - GEN
T1 - Tensile-and fatigue-properties of low alloy steel JIS-SCM435 and carbon steel JIS-SM490B in 115 MPA hydrogen gas
AU - Matsunaga, Hisao
AU - Yoshikawa, Michio
AU - Itoga, Hisatake
AU - Yamabe, Junichiro
AU - Hamada, Shigeru
AU - Matsuoka, Saburo
N1 - Publisher Copyright:
Copyright © 2014 by ASME.
PY - 2014
Y1 - 2014
N2 - Slow strain rate tests using smooth specimens of two types of steels, low alloy steel JIS-SCM435 and carbon steel JIS-SM490B, were carried out in nitrogen gas and hydrogen gas under a pressure of 115 MPa at three different temperatures: 233 K, room temperature and 393 K. In nitrogen gas, these steels exhibited the so-called cup-and-cone fracture at every temperature. On the other hand, in hydrogen gas, in both steels a number of cracks initiated on the specimen surface and coalesced with each other at every temperature, which led to a marked reduction in ductility. Nonetheless, even in hydrogen gas, JIS-SCM435 exhibited a certain reduction of area after the stress-displacement curve reached the tensile strength (TS), whereas JIS-SM490B exhibited little, if any, necking in hydrogen gas. In addition, tension-compression fatigue testing at room temperature revealed that in both steels there was no noticeable difference between the fatigue strengths in air and 115MPa hydrogen gas, especially in a relatively long life regime. Considering that there was little or no hydrogen-induced degradation in either TS or fatigue strength in JIS-SCM435, it is suggested that JIS-SCM435 is eligible for fatigue limit design on the basis of a safety factor (i.e. TS divided by the allowable design stress) for mechanical components used in hydrogen gas up to 115 MPa.
AB - Slow strain rate tests using smooth specimens of two types of steels, low alloy steel JIS-SCM435 and carbon steel JIS-SM490B, were carried out in nitrogen gas and hydrogen gas under a pressure of 115 MPa at three different temperatures: 233 K, room temperature and 393 K. In nitrogen gas, these steels exhibited the so-called cup-and-cone fracture at every temperature. On the other hand, in hydrogen gas, in both steels a number of cracks initiated on the specimen surface and coalesced with each other at every temperature, which led to a marked reduction in ductility. Nonetheless, even in hydrogen gas, JIS-SCM435 exhibited a certain reduction of area after the stress-displacement curve reached the tensile strength (TS), whereas JIS-SM490B exhibited little, if any, necking in hydrogen gas. In addition, tension-compression fatigue testing at room temperature revealed that in both steels there was no noticeable difference between the fatigue strengths in air and 115MPa hydrogen gas, especially in a relatively long life regime. Considering that there was little or no hydrogen-induced degradation in either TS or fatigue strength in JIS-SCM435, it is suggested that JIS-SCM435 is eligible for fatigue limit design on the basis of a safety factor (i.e. TS divided by the allowable design stress) for mechanical components used in hydrogen gas up to 115 MPa.
UR - http://www.scopus.com/inward/record.url?scp=84911955878&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84911955878&partnerID=8YFLogxK
U2 - 10.1115/PVP2014-28511
DO - 10.1115/PVP2014-28511
M3 - Conference contribution
AN - SCOPUS:84911955878
T3 - American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
BT - Materials and Fabrication
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2014 Pressure Vessels and Piping Conference, PVP 2014
Y2 - 20 July 2014 through 24 July 2014
ER -