Temperature dependence of fatigue crack growth in low-alloy steel under gaseous hydrogen

Osamu Takakuwa, Michio Yoshikawa, Saburo Matsuoka, Junichiro Yamabe, Saburo Okazaki, Hisao Matsunaga

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

In order to elucidate the temperature dependence of hydrogen-enhanced fatigue crack growth (FCG), the FCG test was performed on low-alloy Cr-Mo steel JIS-SCM435 according to ASTM E647 using compact tension (CT) specimen under 0.1 - 95 MPa hydrogen-gas at temperature ranging from room temperature (298 K) to 423 K. The obtained results were interpreted according to trap site occupancy under thermal equilibrium state. The FCG was significantly accelerated at RT under hydrogen-gas, that its maximum acceleration rate of the FCG was 15 at the pressure of 95 MPa at the temperature of 298 K. The hydrogen-enhanced FCG was mitigated due to temperature elevation for all pressure conditions. The trap site with binding energy of 44 kJ/mol dominated the temperature dependence of hydrogen-enhanced FCG, corresponding approximately to binding energy of dislocation core. The trap site (dislocation) occupancy is decreased with the temperature elevation, resulting in the mitigation of the FCG acceleration. On the basis of the obtained results, when the occupancy becomes higher at lower temperature, e.g. 298 K, hydrogen-enhanced FCG becomes more pronounced. The lower occupancy at higher temperature does the opposite.

Original languageEnglish
Title of host publicationMaterials and Fabrication
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791851685
DOIs
Publication statusPublished - 2018
EventASME 2018 Pressure Vessels and Piping Conference, PVP 2018 - Prague, Czech Republic
Duration: Jul 15 2018Jul 20 2018

Publication series

NameAmerican Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Volume6B-2018
ISSN (Print)0277-027X

Other

OtherASME 2018 Pressure Vessels and Piping Conference, PVP 2018
Country/TerritoryCzech Republic
CityPrague
Period7/15/187/20/18

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Temperature dependence of fatigue crack growth in low-alloy steel under gaseous hydrogen'. Together they form a unique fingerprint.

Cite this