Synthesis and electrical characterization of n -type carbon nanowalls

Kungen Teii, Shozaburo Shimada, Masahiro Nakashima, Alfred T.H. Chuang

Research output: Contribution to journalArticlepeer-review

79 Citations (Scopus)


Nitrogen-incorporated carbon nanowalls are prepared by microwave plasma-enhanced chemical vapor deposition using acetylene and methane. n -type conduction in the nanowalls is confirmed by Hall- and Seebeck-effect measurements. We show that increasing the amount of C2 radicals by adding Ar enables catalyst-free growth of nanowalls at a high rate up to about 1 μm/min and reduces the deposition temperature (TD) down to around 650 °C. A substrate pretreatment using diamond powder results in a composite of nanowalls and nanocrystalline diamond films, suggesting that the nanowall growth is limited by gas-phase conditions rather than surface conditions. The low conductivity nanowalls for low TD exhibit thermal activation in the Arrhenius plot, indicative of semiconducting conduction, while the high conductivity nanowalls for high TD are almost temperature independent, indicative of quasimetallic conduction. The high conductivity is attributed to a global increase in the s p2 cluster size and crystallinity, which is responsible for increasing delocalization of defect states associated with π bonding and, hence, quasimetallic character.

Original languageEnglish
Article number084303
JournalJournal of Applied Physics
Issue number8
Publication statusPublished - 2009

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy


Dive into the research topics of 'Synthesis and electrical characterization of n -type carbon nanowalls'. Together they form a unique fingerprint.

Cite this