Surface dynamics for creating highly active ru sites for ammonia synthesis: Accumulation of a low-crystalline, oxygen-deficient nanofraction

Katsutoshi Sato, Shin ichiro Miyahara, Yuta Ogura, Kotoko Tsujimaru, Yuichiro Wada, Takaaki Toriyama, Tomokazu Yamamoto, Syo Matsumura, Katsutoshi Nagaoka

Research output: Contribution to journalArticlepeer-review

49 Citations (Scopus)


To mitigate global problems related to energy and global warming, it is helpful to develop an ammonia synthesis process using catalysts that are highly active under mild conditions. Here we show that the ammonia synthesis activity per weight of catalyst of Ru/Ba/LaCeOx, prereduced at 700 °C, is the highest among reported oxide-supported Ru catalysts, 52.3 mmol h-1 gcat -1 at 350 °C, 1.0 MPa. The turnover frequency of Ru/Ba/LaCeOx at 350 °C was more than 8 times that of Cs+/Ru/MgO, which is a well-known active catalyst used as a benchmark; furthermore, hydrogen poisoning, a typical drawback for oxide-supported Ru catalysts, was effectively suppressed. Scanning transmission electron microscopy observations with energy dispersive X-ray spectrometry and electron energy loss spectroscopy analysis revealed that a low-crystalline, oxygen-deficient nanofraction including Ba2+, Ce3+, and La3+ had accumulated on the Ru particles. This unique structure was obtained by exploiting the surface dynamics of alkaline earth compounds and thermostable rare earth oxides that contain redox-active atoms during the reduction at an unusually high temperature. The nanofraction showed strong electron-donating ability because of the strong basicity of the included cations, removal of carbonate, and formation of oxygen defect sites that eliminated electron-withdrawing O2- anions from the interface between the nanofraction and Ru atom. Electrons were therefore effectively donated to antibonding π -orbitals of the N2 molecules via Ru in contact with the nanofraction, and NN triple bond cleavage, which is the rate-determining step for ammonia synthesis, was promoted.

Original languageEnglish
Pages (from-to)2726-2734
Number of pages9
JournalACS Sustainable Chemistry and Engineering
Issue number7
Publication statusPublished - Feb 24 2020

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Environmental Chemistry
  • Chemical Engineering(all)
  • Renewable Energy, Sustainability and the Environment


Dive into the research topics of 'Surface dynamics for creating highly active ru sites for ammonia synthesis: Accumulation of a low-crystalline, oxygen-deficient nanofraction'. Together they form a unique fingerprint.

Cite this