Suppression of HBV replication by the expression of nickase-and nuclease dead-Cas9

Takeshi Kurihara, Takasuke Fukuhara, Chikako Ono, Satomi Yamamoto, Kentaro Uemura, Toru Okamoto, Masaya Sugiyama, Daisuke Motooka, Shota Nakamura, Masato Ikawa, Masashi Mizokami, Yoshihiko Maehara, Yoshiharu Matsuura

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)


Complete removal of hepatitis B virus (HBV) DNA from nuclei is difficult by the current therapies. Recent reports have shown that a novel genome-editing tool using Cas9 with a single-guide RNA (sgRNA) system can cleave the HBV genome in vitro and in vivo. However, induction of a double-strand break (DSB) on the targeted genome by Cas9 risks undesirable off-target cleavage on the host genome. Nickase-Cas9 cleaves a single strand of DNA, and thereby two sgRNAs are required for inducing DSBs. To avoid Cas9-induced off-target mutagenesis, we examined the effects of the expressions of nickase-Cas9 and nuclease dead Cas9 (d-Cas9) with sgRNAs on HBV replication. The expression of nickase-Cas9 with a pair of sgRNAs cleaved the target HBV genome and suppressed the viral-protein expression and HBV replication in vitro. Moreover, nickase-Cas9 with the sgRNA pair cleaved the targeted HBV genome in mouse liver. Interestingly, d-Cas9 expression with the sgRNAs also suppressed HBV replication in vitro without cleaving the HBV genome. These results suggest the possible use of nickase-Cas9 and d-Cas9 with a pair of sgRNAs for eliminating HBV DNA from the livers of chronic hepatitis B patients with low risk of undesirable off-target mutation on the host genome.

Original languageEnglish
Article number6122
JournalScientific reports
Issue number1
Publication statusPublished - Dec 1 2017

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Suppression of HBV replication by the expression of nickase-and nuclease dead-Cas9'. Together they form a unique fingerprint.

Cite this