TY - JOUR
T1 - Superiority of dietary safflower oil over olive oil in lowering serum cholesterol and increasing hepatic mRNAs for the LDL receptor and cholesterol 7α-Hydroxylase in exogenously hypercholesterolemic (ExHC) rats
AU - Sato, Masao
AU - Yoshida, Susumu
AU - Nagao, Koji
AU - Imaizumi, Katsumi
N1 - Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2000
Y1 - 2000
N2 - The exogenously hypercholesterolemic (ExHC) rat is a strain segregated from SD rats with a high response to dietary cholesterol. To understand the underlying mechanism(s) for this hypercholesterolemia, the interactive effects of dietary fatty acid and the susceptibility of rats to dietary cholesterol on the serum cholesterol concentration and hepatic mRNA abundance of the low-density lipoprotein (LDL) receptor, cholesterol 7α-hydroxylase (7α-hydroxylase) and 3-hydroxyl-3methyl-glutaryl (HMG) CoA reductase were examined. Both strains were fed on a diet supplemented with 10% each of olive, safflower or coconut oil with or without the addition of 1% cholesterol for one week. The ExHC rats fed on olive, safflower and coconut oil in combination with cholesterol respectively resulted in a 3.5-, 2.0- and 2.1-fold higher serum cholesterol concentration than that in the animals fed on the corresponding dietary fats without any supplementation of cholesterol (p<0.01 by dietary cholesterol or type of fat). The dietary cholesterol dependent-elevation of serum cholesterol in the SD rats was less than 1.5-fold (p<0.01) and there was no dietary fat effect. The ExHC rats fed on the safflower oil-containing diet supplemented with cholesterol resulted in a higher mRNA abundance of the LDL receptor and 7α-hydroxylase than in the corresponding fat-fed rats without cholesterol (p<0.05). There was no dietary cholesterol-dependent change of mRNA abundance in either strain fed on olive or coconut oil, except for a decreased abundance of HMG CoA reductase mRNA in the olive oil-fed ExHC rats and coconut oil-fed Sprague-Dawley (SD) rats (p<0.05). These results indicate that the hepatic mRNA abundance of the LDL receptor and of 7α-hydroxylase depended on the dietary combination of cholesterol and a fatty acid and suggest that a linoleic acid-rich diet may alleviate exogenous hypercholesterolemia by activating the process involved in the hepatic uptake and biliary excretion of serum cholesterol.
AB - The exogenously hypercholesterolemic (ExHC) rat is a strain segregated from SD rats with a high response to dietary cholesterol. To understand the underlying mechanism(s) for this hypercholesterolemia, the interactive effects of dietary fatty acid and the susceptibility of rats to dietary cholesterol on the serum cholesterol concentration and hepatic mRNA abundance of the low-density lipoprotein (LDL) receptor, cholesterol 7α-hydroxylase (7α-hydroxylase) and 3-hydroxyl-3methyl-glutaryl (HMG) CoA reductase were examined. Both strains were fed on a diet supplemented with 10% each of olive, safflower or coconut oil with or without the addition of 1% cholesterol for one week. The ExHC rats fed on olive, safflower and coconut oil in combination with cholesterol respectively resulted in a 3.5-, 2.0- and 2.1-fold higher serum cholesterol concentration than that in the animals fed on the corresponding dietary fats without any supplementation of cholesterol (p<0.01 by dietary cholesterol or type of fat). The dietary cholesterol dependent-elevation of serum cholesterol in the SD rats was less than 1.5-fold (p<0.01) and there was no dietary fat effect. The ExHC rats fed on the safflower oil-containing diet supplemented with cholesterol resulted in a higher mRNA abundance of the LDL receptor and 7α-hydroxylase than in the corresponding fat-fed rats without cholesterol (p<0.05). There was no dietary cholesterol-dependent change of mRNA abundance in either strain fed on olive or coconut oil, except for a decreased abundance of HMG CoA reductase mRNA in the olive oil-fed ExHC rats and coconut oil-fed Sprague-Dawley (SD) rats (p<0.05). These results indicate that the hepatic mRNA abundance of the LDL receptor and of 7α-hydroxylase depended on the dietary combination of cholesterol and a fatty acid and suggest that a linoleic acid-rich diet may alleviate exogenous hypercholesterolemia by activating the process involved in the hepatic uptake and biliary excretion of serum cholesterol.
UR - http://www.scopus.com/inward/record.url?scp=0034204205&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034204205&partnerID=8YFLogxK
U2 - 10.1271/bbb.64.1111
DO - 10.1271/bbb.64.1111
M3 - Article
C2 - 10923778
AN - SCOPUS:0034204205
SN - 0916-8451
VL - 64
SP - 1111
EP - 1117
JO - Bioscience, Biotechnology and Biochemistry
JF - Bioscience, Biotechnology and Biochemistry
IS - 6
ER -