Substrate-Dependent Alteration in the C- and O-Prenylation Specificities of Cannabis Prenyltransferase

Ryosuke Tanaya, Takeshi Kodama, Juthamart Maneenet, Yoko Yasuno, Atsushi Nakayama, Tetsuro Shinada, Hironobu Takahashi, Takuya Ito, Hiroyuki Morita, Suresh Awale, Futoshi Taura

Research output: Contribution to journalArticlepeer-review

Abstract

CsPT4 is an aromatic prenyltransferase that synthesizes cannabigerolic acid (CBGA), the key intermediate of cannabinoid biosynthesis in Cannabis sativa, from olivetolic acid (OA) and geranyl diphosphate (GPP). CsPT4 has a catalytic potential to produce a variety of CBGA analogs via regioselective C-prenylation of aromatic substrates having resorcylic acid skeletons including bibenzyl 2,4-dihydroxy-6-phenylethylbenzoic acid (DPA). In this study, we further investigated the substrate specificity of CsPT4 using phlorocaprophenone (PCP) and 2′,4′,6′-trihydroxydihydrochalcone (THDC), the isomers of OA and DPA, respectively, and demonstrated that CsPT4 catalyzed both C-prenylation and O-prenylation reactions on PCP and THDC that share acylphloroglucinol substructures. Interestingly, the kinetic parameters of CsPT4 for these substrates differed depending on whether they underwent C-prenylation or O-prenylation, suggesting that this enzyme utilized different substrate-binding modes suitable for the respective reactions. Aromatic prenyltransferases that catalyze O-prenylation are rare in the plant kingdom, and CsPT4 was notable for altering the reaction specificity between C- and O-prenylations depending on the skeletons of aromatic substrates. We also demonstrated that enzymatically synthesized geranylated acylphloroglucinols had potent antiausterity activity against PANC-1 human pancreatic cancer cells, with 4′-O-geranyl THDC being the most effective. We suggest that CsPT4 is a valuable catalyst to generate biologically active C- and O-prenylated molecules that could be anticancer lead compounds.

Original languageEnglish
Pages (from-to)449-453
Number of pages5
JournalBiological and Pharmaceutical Bulletin
Volume47
Issue number2
DOIs
Publication statusPublished - Feb 2024
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Pharmacology
  • Pharmaceutical Science

Fingerprint

Dive into the research topics of 'Substrate-Dependent Alteration in the C- and O-Prenylation Specificities of Cannabis Prenyltransferase'. Together they form a unique fingerprint.

Cite this