Submicron-scale condensation on hydrophobic and hydrophilic surfaces

Yutaka Yamada, Tatsuya Ikuta, Takashi Nishiyama, Koji Takahashi, Yasuyuki Takata

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Condensation heat transfer is a widely-used technique for industrial applications represented by heat exchanger because of its high heat transfer coefficient. To enhance its performance, a suitable surface is required, where both condensation and droplet removal smoothly occur. In this study, we compared wettability of a graphene surface and an amorphous carbon surface. The result shows that an amorphous carbon surface is more hydrophilic. Then we prepared a graphite surface which has nanoscale hydrophilic regions in large hydrophobic area. We observed the submicron-scale droplet condensation occurs preferentially on the hydrophilic graphite step by using environmental scanning electron microscope (ESEM).

Original languageEnglish
Title of host publicationSafety, Reliability and Risk; Virtual Podium (Posters)
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791856444
DOIs
Publication statusPublished - 2013
EventASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013 - San Diego, CA, United States
Duration: Nov 15 2013Nov 21 2013

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume15

Other

OtherASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013
Country/TerritoryUnited States
CitySan Diego, CA
Period11/15/1311/21/13

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Submicron-scale condensation on hydrophobic and hydrophilic surfaces'. Together they form a unique fingerprint.

Cite this