Structural evolution and deformation in an aluminum-based solid solution alloy with submicron grain size

Jingtao Wang, Zenji Horita, Minoru Nemoto, Minoru Furukawa, Ruslan Z. Valiev, Yan Ma, Terence G. Langdon

    Research output: Contribution to journalConference articlepeer-review

    6 Citations (Scopus)

    Abstract

    Superplastic ductilities may be achieved in tension using polycrystalline materials with small grain sizes (typically < 10μm). Experiments were conducted to evaluate the significance of the grain boundaries in an Al-3% Mg solid solution alloy with a submicron grain size (nearly0.2 μm). The material was produced by subjecting the alloy to severe plastic strain using a pressing technique. This paper describes the nature of the microstructure in the as-fabricated condition, the evolution of the microstructure as a function of time and/or temperature, and the effect of testing in tension at a temperature of 403 K.

    Original languageEnglish
    Pages (from-to)293-298
    Number of pages6
    JournalMaterials Research Society Symposium - Proceedings
    Volume319
    Publication statusPublished - Jan 1 1994
    EventProceedings of the MRS 1993 Fall Meeting - Boston, MA, USA
    Duration: Nov 29 1993Dec 2 1993

    All Science Journal Classification (ASJC) codes

    • Materials Science(all)
    • Condensed Matter Physics
    • Mechanics of Materials
    • Mechanical Engineering

    Fingerprint

    Dive into the research topics of 'Structural evolution and deformation in an aluminum-based solid solution alloy with submicron grain size'. Together they form a unique fingerprint.

    Cite this