TY - JOUR
T1 - Stromal cell-derived factor-1 overexpression induces gastric dysplasia through expansion of stromal myofibroblasts and epithelial progenitors
AU - Shibata, Wataru
AU - Ariyama, Hiroshi
AU - Westphalen, Christoph Benedikt
AU - Worthley, Daniel L.
AU - Muthupalani, Sureshkumar
AU - Asfaha, Samuel
AU - Dubeykovskaya, Zinaida
AU - Quante, Michael
AU - Fox, James G.
AU - Wang, Timothy C.
PY - 2013/2
Y1 - 2013/2
N2 - Objective: Stromal cell-derived factor-1 (SDF-1/CXCL12), the main ligand for CXCR4, is overexpressed in human cancer. This study addressed the precise contribution of SDF-1 to gastric carcinogenesis. Design: SDF-1 transgenic mice were created and a Helicobacter-induced gastric cancer model was used in combination with H/K-ATPase-IL-1β mice. Gastric tissue was analysed by histopathology and cells isolated from the stomach were analysed by molecular biological methods. Results: Analysis of the H/K-ATPase/SDF-1 transgenic (SDF-Tg) mice showed that SDF-1 overexpression results in significant gastric epithelial hyperproliferation, mucous neck cell hyperplasia and spontaneous gastric dysplasia (wild-type mice 0/15 (0%) vs SDF-Tg mice 4/14 (28.6%), p=0.042, Fisher exact test) but has minimal effects on inflammation. SDF-Tg mice also showed a dramatic expansion of α-smooth muscle actin-positive myofibroblasts and CXCR4-expressing gastric epithelial cells in the progenitor zone, both of which preceded the development of significant gastritis or dysplasia. Gremlin 1-expressing mesenchymal stem cells, the putative precursors of myofibroblasts, were also increased within the dysplastic stomachs of SDF-Tg mice and showed chemotaxis in response to SDF-1 stimulation. SDF-1 overexpression alone resulted in minimal recruitment of haematopoietic cells to the gastric mucosa, although macrophages were increased late in the disease. When SDF-Tg mice were crossed with H/K-ATPase-IL-1β mice or infected with Helicobacter felis, however, there were dramatic synergistic effects on recruitment of bone marrow-derived cells and progression to preneoplasia. Conclusion: Activation of the SDF-1/CXCR4 axis can contribute to early stages of carcinogenesis primarily through recruitment of stromal cells and modulation of the progenitor niche.
AB - Objective: Stromal cell-derived factor-1 (SDF-1/CXCL12), the main ligand for CXCR4, is overexpressed in human cancer. This study addressed the precise contribution of SDF-1 to gastric carcinogenesis. Design: SDF-1 transgenic mice were created and a Helicobacter-induced gastric cancer model was used in combination with H/K-ATPase-IL-1β mice. Gastric tissue was analysed by histopathology and cells isolated from the stomach were analysed by molecular biological methods. Results: Analysis of the H/K-ATPase/SDF-1 transgenic (SDF-Tg) mice showed that SDF-1 overexpression results in significant gastric epithelial hyperproliferation, mucous neck cell hyperplasia and spontaneous gastric dysplasia (wild-type mice 0/15 (0%) vs SDF-Tg mice 4/14 (28.6%), p=0.042, Fisher exact test) but has minimal effects on inflammation. SDF-Tg mice also showed a dramatic expansion of α-smooth muscle actin-positive myofibroblasts and CXCR4-expressing gastric epithelial cells in the progenitor zone, both of which preceded the development of significant gastritis or dysplasia. Gremlin 1-expressing mesenchymal stem cells, the putative precursors of myofibroblasts, were also increased within the dysplastic stomachs of SDF-Tg mice and showed chemotaxis in response to SDF-1 stimulation. SDF-1 overexpression alone resulted in minimal recruitment of haematopoietic cells to the gastric mucosa, although macrophages were increased late in the disease. When SDF-Tg mice were crossed with H/K-ATPase-IL-1β mice or infected with Helicobacter felis, however, there were dramatic synergistic effects on recruitment of bone marrow-derived cells and progression to preneoplasia. Conclusion: Activation of the SDF-1/CXCR4 axis can contribute to early stages of carcinogenesis primarily through recruitment of stromal cells and modulation of the progenitor niche.
UR - http://www.scopus.com/inward/record.url?scp=84872085900&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84872085900&partnerID=8YFLogxK
U2 - 10.1136/gutjnl-2011-301824
DO - 10.1136/gutjnl-2011-301824
M3 - Article
C2 - 22362916
AN - SCOPUS:84872085900
SN - 0017-5749
VL - 62
SP - 192
EP - 200
JO - Gut
JF - Gut
IS - 2
ER -