Strigolactones Modulate Salicylic Acid-Mediated Disease Resistance in Arabidopsis thaliana

Miyuki Kusajima, Moeka Fujita, Khamsalath Soudthedlath, Hidemitsu Nakamura, Koichi Yoneyama, Takahito Nomura, Kohki Akiyama, Akiko Maruyama-Nakashita, Tadao Asami, Hideo Nakashita

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

Strigolactones are low-molecular-weight phytohormones that play several roles in plants, such as regulation of shoot branching and interactions with arbuscular mycorrhizal fungi and parasitic weeds. Recently, strigolactones have been shown to be involved in plant responses to abiotic and biotic stress conditions. Herein, we analyzed the effects of strigolactones on systemic acquired resistance induced through salicylic acid-mediated signaling. We observed that the systemic acquired resistance inducer enhanced disease resistance in strigolactone-signaling and biosynthesis-deficient mutants. However, the amount of endogenous salicylic acid and the expression levels of salicylic acid-responsive genes were lower in strigolactone signaling-deficient max2 mutants than in wildtype plants. In both the wildtype and strigolactone biosynthesis-deficient mutants, the strigolactone analog GR24 enhanced disease resistance, whereas treatment with a strigolactone biosynthesis inhibitor suppressed disease resistance in the wildtype. Before inoculation of wildtype plants with pathogenic bacteria, treatment with GR24 did not induce defense-related genes; however, salicylic acid-responsive defense genes were rapidly induced after pathogenic infection. These findings suggest that strigolactones have a priming effect on Arabidopsis thaliana by inducing salicylic acid-mediated disease resistance.

Original languageEnglish
Article number5246
JournalInternational journal of molecular sciences
Volume23
Issue number9
DOIs
Publication statusPublished - May 1 2022

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Strigolactones Modulate Salicylic Acid-Mediated Disease Resistance in Arabidopsis thaliana'. Together they form a unique fingerprint.

Cite this