TY - GEN
T1 - Strain distribution around dental implants in cortical/cancellous bone models using DIC method
AU - Morita, Yasuyuki
AU - Qian, Lihe
AU - Todo, Mitsugu
AU - Matsushita, Yasuyuki
AU - Arakawa, Kazuo
PY - 2009
Y1 - 2009
N2 - For normal healthy teeth, the percussive energy generated by mastication is attenuated by the periodontal ligament at the healthy bone/natural tooth interface. However, when a natural tooth must be replaced by an implant because of damage or disease, the ligament is lost and the implant will transmit the percussive forces to the bone directly. Studies have evaluated the deformation distribution of the alveolar bone in the vicinity of implants using finite element analysis and photoelasticity. However, finite element analysis requires clinical verification or a determination of material properties, and photoelastic materials generally have material properties and structure quite different from those of actual bone. Therefore, this study examined the deformation distribution around dental implants in cortical/cancelbus bone experimentally using sawbone cortical/cancellous bone models. Dental implants were placed in the bone models and the displacement distribution was measured using the digital image correlation method, and the strain distribution was visualized under a compressive load that simulated the occlusion force.
AB - For normal healthy teeth, the percussive energy generated by mastication is attenuated by the periodontal ligament at the healthy bone/natural tooth interface. However, when a natural tooth must be replaced by an implant because of damage or disease, the ligament is lost and the implant will transmit the percussive forces to the bone directly. Studies have evaluated the deformation distribution of the alveolar bone in the vicinity of implants using finite element analysis and photoelasticity. However, finite element analysis requires clinical verification or a determination of material properties, and photoelastic materials generally have material properties and structure quite different from those of actual bone. Therefore, this study examined the deformation distribution around dental implants in cortical/cancelbus bone experimentally using sawbone cortical/cancellous bone models. Dental implants were placed in the bone models and the displacement distribution was measured using the digital image correlation method, and the strain distribution was visualized under a compressive load that simulated the occlusion force.
UR - http://www.scopus.com/inward/record.url?scp=73449097495&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=73449097495&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:73449097495
SN - 9781615671892
SN - 9781615671892
T3 - Society for Experimental Mechanics - SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2009
SP - 1365
EP - 1370
BT - Society for Experimental Mechanics - SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2009
T2 - SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2009
Y2 - 1 June 2009 through 4 June 2009
ER -