TY - JOUR
T1 - Stoichiometric and catalytic activation of Si-H bonds by a triruthenium carbonyl cluster, (μ3,η2:η3:η 5-acenaphthylene)Ru3(CO)7
T2 - Isolation of the oxidative adducts, catalytic hydrosilylation of aldehydes, ketones, and acetals, and catalytic polymerization of cyclic ethers
AU - Nagashima, Hideo
AU - Suzuki, Akihiro
AU - Iura, Takafumi
AU - Ryu, Kazuhiro
AU - Matsubara, Kouki
PY - 2000
Y1 - 2000
N2 - Treatment of the ruthenium cluster (μ3,η2:η3:η 5-acenaphthylene)Ru3(CO)7 (1) with stoichiometric amounts of trialkylsilanes results in liberation of a CO ligand followed by oxidative addition of a Si-H bond. The trinuclear silyl complexes (μ3,η2:η3:η 5-acenaphthylene)-Ru3(H)(SiR3)(CO)6 (2) were isolated in good yield. They were characterized by NMR spectroscopy and X-ray crystallography. Compound 1 catalyzes the hydrosilylation of olefins, acetylenes, ketones, and aldehydes. In particular, the reactions of aldehydes and ketones proceed at room temperature to form the corresponding silyl ethers in good yield; the catalytic activities are superior to those with RhCl(PPh3)3. The RhCl(PPh3)3-catalyzed hydrosilylation of ketones with Me2(H)SiCH2CH2Si(H)Me2 results in selective reaction of only one Si-H terminus, while similar reactions, when catalyzed by 1, allow utilization of both Si-H groups. Significantly different regio- and stereoselectivities, compared with those obtained in reactions catalyzed by RhCl(PPh3)3, also were observed in the hydrosilylation of α,β-unsaturated carbonyl compounds and 4-tert-butylcyclohexanone, respectively. The reactions with acetals and cyclic ethers also take place under similar conditions. The reaction of trialkylsilanes with an excess of a cyclic ether resulted in ring-opening polymerization. Polymerization of THF was investigated as a representative example. Treatment of trialkylsilanes with an excess of THF (10-102 equiv with respect to silanes) in the presence of a catalytic amount of 1 resulted in production of polytetrahydrofuran with Mn = 1000-200 000 and Mw/Mn = 1.3-2.0. Changing the ratio of THF to HSiR3 can control the molecular weight. NMR studies suggested that the structure of the polymer is R3SiO-[(CH2)4O]n-CH 2CH2CH2CH3. Mechanistic considerations based on differences in the catalytic activities between the catalysts 1 and 2 are discussed.
AB - Treatment of the ruthenium cluster (μ3,η2:η3:η 5-acenaphthylene)Ru3(CO)7 (1) with stoichiometric amounts of trialkylsilanes results in liberation of a CO ligand followed by oxidative addition of a Si-H bond. The trinuclear silyl complexes (μ3,η2:η3:η 5-acenaphthylene)-Ru3(H)(SiR3)(CO)6 (2) were isolated in good yield. They were characterized by NMR spectroscopy and X-ray crystallography. Compound 1 catalyzes the hydrosilylation of olefins, acetylenes, ketones, and aldehydes. In particular, the reactions of aldehydes and ketones proceed at room temperature to form the corresponding silyl ethers in good yield; the catalytic activities are superior to those with RhCl(PPh3)3. The RhCl(PPh3)3-catalyzed hydrosilylation of ketones with Me2(H)SiCH2CH2Si(H)Me2 results in selective reaction of only one Si-H terminus, while similar reactions, when catalyzed by 1, allow utilization of both Si-H groups. Significantly different regio- and stereoselectivities, compared with those obtained in reactions catalyzed by RhCl(PPh3)3, also were observed in the hydrosilylation of α,β-unsaturated carbonyl compounds and 4-tert-butylcyclohexanone, respectively. The reactions with acetals and cyclic ethers also take place under similar conditions. The reaction of trialkylsilanes with an excess of a cyclic ether resulted in ring-opening polymerization. Polymerization of THF was investigated as a representative example. Treatment of trialkylsilanes with an excess of THF (10-102 equiv with respect to silanes) in the presence of a catalytic amount of 1 resulted in production of polytetrahydrofuran with Mn = 1000-200 000 and Mw/Mn = 1.3-2.0. Changing the ratio of THF to HSiR3 can control the molecular weight. NMR studies suggested that the structure of the polymer is R3SiO-[(CH2)4O]n-CH 2CH2CH2CH3. Mechanistic considerations based on differences in the catalytic activities between the catalysts 1 and 2 are discussed.
UR - http://www.scopus.com/inward/record.url?scp=0034272709&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034272709&partnerID=8YFLogxK
U2 - 10.1021/om0003887
DO - 10.1021/om0003887
M3 - Article
AN - SCOPUS:0034272709
SN - 0276-7333
VL - 19
SP - 3579
EP - 3590
JO - Organometallics
JF - Organometallics
IS - 18
ER -