TY - JOUR
T1 - Stereoelectronic effects in Menshutkin-type SN2 reactions
T2 - Theoretical study based on through-space/bond orbital interaction analysis
AU - Jiang, Lizhi
AU - Orimoto, Yuuichi
AU - Aoki, Yuriko
PY - 2013/11
Y1 - 2013/11
N2 - Through-space/bond orbital interaction analysis has been applied to investigate the stereoelectronic effects on stabilizing the transition state of Menshutkin-type SN2 reactions. The mechanism of how the substituent effects work on accelerating the reactions has been demonstrated from orbital interaction perspective. The geometrical structures and Mulliken charge distributions have been compared to elucidate the substituent effects for the SN2 reaction center. It is found that the substituents lower the activation energies by strengthening the orbital interactions in the S N2 reaction process. When electron-donating and electron-accepting substituents (-C6H5 and -CHO) are introduced to the same central carbon at the reaction center, the symmetry allows the π-π* interactions among the donor and acceptor in the transition state. It stabilizes the transition state much more than the reactant complex. And the π-π* interactions are estimated to decrease about 2.28 kcal/mol of the energy for transition state. The σ-like orbitals of the partial bond around the central carbon are reactive, and the σ-π* orbital interactions stabilize the reactant complex much more than the π-σ* interaction. When the σ-π* and π-σ* interactions are deleted from the system, the activation energy increases and turns close to the values of the systems which are without such substituents. It can be concluded that the π-π*, σ-π*, and π-σ* interactions cooperatively accelerates the SN2 reaction by stabilizing its transition state.
AB - Through-space/bond orbital interaction analysis has been applied to investigate the stereoelectronic effects on stabilizing the transition state of Menshutkin-type SN2 reactions. The mechanism of how the substituent effects work on accelerating the reactions has been demonstrated from orbital interaction perspective. The geometrical structures and Mulliken charge distributions have been compared to elucidate the substituent effects for the SN2 reaction center. It is found that the substituents lower the activation energies by strengthening the orbital interactions in the S N2 reaction process. When electron-donating and electron-accepting substituents (-C6H5 and -CHO) are introduced to the same central carbon at the reaction center, the symmetry allows the π-π* interactions among the donor and acceptor in the transition state. It stabilizes the transition state much more than the reactant complex. And the π-π* interactions are estimated to decrease about 2.28 kcal/mol of the energy for transition state. The σ-like orbitals of the partial bond around the central carbon are reactive, and the σ-π* orbital interactions stabilize the reactant complex much more than the π-σ* interaction. When the σ-π* and π-σ* interactions are deleted from the system, the activation energy increases and turns close to the values of the systems which are without such substituents. It can be concluded that the π-π*, σ-π*, and π-σ* interactions cooperatively accelerates the SN2 reaction by stabilizing its transition state.
UR - http://www.scopus.com/inward/record.url?scp=84886584183&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84886584183&partnerID=8YFLogxK
U2 - 10.1002/poc.3186
DO - 10.1002/poc.3186
M3 - Article
AN - SCOPUS:84886584183
SN - 0894-3230
VL - 26
SP - 885
EP - 891
JO - Journal of Physical Organic Chemistry
JF - Journal of Physical Organic Chemistry
IS - 11
ER -