TY - GEN
T1 - SSRT and fatigue crack growth properties of high-strength austenitic stainless steels in high-pressure hydrogen gas
AU - Itoga, Hisatake
AU - Matsuo, Takashi
AU - Orita, Akihiro
AU - Matsunaga, Hisao
AU - Matsuoka, Saburo
AU - Hirotani, Ryuichi
N1 - Publisher Copyright:
Copyright © 2014 by ASME.
PY - 2014
Y1 - 2014
N2 - Slow strain rate tests (SSRTs) were performed with two types of high-strength austenitic stainless steels, Types AH and BX, as well as with two types of conventional austenitic stainless steels, Types 304 and 316L. The tests used the following combinations of specimen types and test atmospheres: (i) non-charged specimens tested in air, (ii) hydrogen-charged specimens tested in air (tests for internal hydrogen), and (iii) non-charged specimens tested in hydrogen gas at pressures of 78 ∼ 115 MPa (tests for external hydrogen). Type 304 exhibited a marked reduction of ductility in the tests for both internal hydrogen and external hydrogen, whereas Types AH, BX and 316L exhibited little or no degradation. In addition, fatigue crack growth (FCG) tests for the four types of steels were also carried out in air and hydrogen gas at pressures of 100 ∼ 115 MPa. In Type 304, FCG in hydrogen gas was more than 10 times as fast as that in air, whereas the acceleration rate remained within 1.5 ∼ 3 times in Types AH, BX and 316L. It was presumed that, in Types AH and BX, a small amount of additive elements, e.g. nitrogen and niobium, increased the strength as well as the stability of the austenitic phase, which thereby led to the excellent resistance against hydrogen.
AB - Slow strain rate tests (SSRTs) were performed with two types of high-strength austenitic stainless steels, Types AH and BX, as well as with two types of conventional austenitic stainless steels, Types 304 and 316L. The tests used the following combinations of specimen types and test atmospheres: (i) non-charged specimens tested in air, (ii) hydrogen-charged specimens tested in air (tests for internal hydrogen), and (iii) non-charged specimens tested in hydrogen gas at pressures of 78 ∼ 115 MPa (tests for external hydrogen). Type 304 exhibited a marked reduction of ductility in the tests for both internal hydrogen and external hydrogen, whereas Types AH, BX and 316L exhibited little or no degradation. In addition, fatigue crack growth (FCG) tests for the four types of steels were also carried out in air and hydrogen gas at pressures of 100 ∼ 115 MPa. In Type 304, FCG in hydrogen gas was more than 10 times as fast as that in air, whereas the acceleration rate remained within 1.5 ∼ 3 times in Types AH, BX and 316L. It was presumed that, in Types AH and BX, a small amount of additive elements, e.g. nitrogen and niobium, increased the strength as well as the stability of the austenitic phase, which thereby led to the excellent resistance against hydrogen.
UR - http://www.scopus.com/inward/record.url?scp=84911954494&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84911954494&partnerID=8YFLogxK
U2 - 10.1115/PVP2014-28640
DO - 10.1115/PVP2014-28640
M3 - Conference contribution
AN - SCOPUS:84911954494
T3 - American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
BT - Materials and Fabrication
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2014 Pressure Vessels and Piping Conference, PVP 2014
Y2 - 20 July 2014 through 24 July 2014
ER -