Spin-isospin responses via (p,n) and (n,p) reactions

M. Ichimura, H. Sakai, T. Wakasa

Research output: Contribution to journalReview articlepeer-review

177 Citations (Scopus)


Recent progress in the study of spin-isospin responses by charge exchange (p,n) and (n,p) reactions at 300-500 MeV is reviewed with special emphases on quenching of the total Gamow-Teller (GT) strength at a momentum transfer q=0fm-1 and enhancement of the spin-longitudinal (pionic) response in quasielastic scattering (QES) at q≈1.7fm-1. This progress has been made possible by the development of experimental techniques such as polarization transfer measurements for (p,n) reactions and quasi-monochromatic neutron beam production for (n,p) measurements. Currently operating (p→,n→) and (n,p) facilities are described. We present a detailed method of multipole decomposition analysis to extract GT strengths from the continuum spectra of the Zr90(p,n) and (n,p) reactions. From the obtained GT strength distributions, a quenching factor Q with respect to the GT sum rule value of 3(N-Z) can be derived. We also describe a method to obtain the polarized cross section IDi for the QES region from a complete set of polarization transfer coefficients Dij for the (p→,n→) reaction. The peak position of the GT giant resonance, the quenching factor Q, and the spin-longitudinal cross section IDq are used to estimate the values for the Landau-Migdal parameters, giving gNN′=0.6-0.7 and gNΔ′=0.2-0.4, which are appropriate for the wide range q≈0-1.7fm-1. This small gNΔ′ value leads to a large increase in pionic attraction in a large momentum transfer region. One possible consequence of this is a reduction of the critical density of pion condensation, which is briefly touched upon. Another consequence is precursor phenomena of pion condensation in the normal nuclear density which appear in the enhancement of IDq. Basic theoretical elements, including the Δ isobar degrees of freedom for analyzing experimental data, are described. Treatments of the continuum in reactions as well as in nuclear structure are emphasized. The framework of the distorted wave impulse approximation as well as two-step processes using the response functions in the continuum random phase approximation is described.

Original languageEnglish
Pages (from-to)446-531
Number of pages86
JournalProgress in Particle and Nuclear Physics
Issue number2
Publication statusPublished - Apr 2006

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics


Dive into the research topics of 'Spin-isospin responses via (p,n) and (n,p) reactions'. Together they form a unique fingerprint.

Cite this