TY - JOUR
T1 - Species variation in the intracellular localization of pyruvate, Pi dikinase in leaves of crassulacean-acid-metabolism plants
T2 - An immunogold electron-microscope study
AU - Kondo, Ayumu
AU - Nose, Akihiro
AU - Yuasa, Hiroshi
AU - Ueno, Osamu
N1 - Funding Information:
Part of this study was supported by a grant-in-aid from the Science and Technology Agency of Japan (Enhancement of Center-of-Excellence) to O.U.
PY - 2000/3
Y1 - 2000/3
N2 - In malic enzyme-dependent crassulacean-acid-metabolism (ME-CAM) plants, malic acid is decarboxylated by NADP-ME and NAD-ME and generates pyruvate with CO2. Pyruvate is phosphorylated to phosphoenolpyruvate by pyruvate, Pi dikinase (PPDK) and is then conserved in gluconeogenesis. Although PPDK was considered to be located in chloroplasts (e.g., Mesembryanthemum crystallinum), it has recently been found to accumulate in both the chloroplasts and the cytosol in two Kalanchoe species. In this study, the intracellular localization of PPDK was investigated in 22 ME-CAM species in 13 genera of 5 families by immunogold labeling and electron microscopy. This revealed that the pattern of intracellular localization of PPDK varies among the ME-CAM plants and is divided into three types: Chlt, in which PPDK accumulates only in the chloroplasts; Cyt-Chlt, in which PPDK accumulates in both chloroplasts and cytosol; and Cyt, in which PPDK accumulates predominantly in the cytosol. Members of a particular genus tend to have a common PPDK-localization type. In the Cactaceae, all species from seven genera were classified as Cyt. The photosynthetic tissues of all ME-CAM species, including the Cyt type, had substantial PPDK activity, suggesting that PPDK in the cytosol is active and probably plays a functional role. In the Chlt species, NADP-ME activity was relatively greater than NAD-ME activity. In the Cyt-Chlt and Cyt species, however, either the activity of NAD-ME was higher than that of NADP-ME or they were approximately the same. The species variation in the intracellular localization of PPDK is discussed in relation to CAM function and to molecular and phylogenetic aspects.
AB - In malic enzyme-dependent crassulacean-acid-metabolism (ME-CAM) plants, malic acid is decarboxylated by NADP-ME and NAD-ME and generates pyruvate with CO2. Pyruvate is phosphorylated to phosphoenolpyruvate by pyruvate, Pi dikinase (PPDK) and is then conserved in gluconeogenesis. Although PPDK was considered to be located in chloroplasts (e.g., Mesembryanthemum crystallinum), it has recently been found to accumulate in both the chloroplasts and the cytosol in two Kalanchoe species. In this study, the intracellular localization of PPDK was investigated in 22 ME-CAM species in 13 genera of 5 families by immunogold labeling and electron microscopy. This revealed that the pattern of intracellular localization of PPDK varies among the ME-CAM plants and is divided into three types: Chlt, in which PPDK accumulates only in the chloroplasts; Cyt-Chlt, in which PPDK accumulates in both chloroplasts and cytosol; and Cyt, in which PPDK accumulates predominantly in the cytosol. Members of a particular genus tend to have a common PPDK-localization type. In the Cactaceae, all species from seven genera were classified as Cyt. The photosynthetic tissues of all ME-CAM species, including the Cyt type, had substantial PPDK activity, suggesting that PPDK in the cytosol is active and probably plays a functional role. In the Chlt species, NADP-ME activity was relatively greater than NAD-ME activity. In the Cyt-Chlt and Cyt species, however, either the activity of NAD-ME was higher than that of NADP-ME or they were approximately the same. The species variation in the intracellular localization of PPDK is discussed in relation to CAM function and to molecular and phylogenetic aspects.
UR - http://www.scopus.com/inward/record.url?scp=0034080904&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034080904&partnerID=8YFLogxK
U2 - 10.1007/s004250050051
DO - 10.1007/s004250050051
M3 - Article
C2 - 10787055
AN - SCOPUS:0034080904
SN - 0032-0935
VL - 210
SP - 611
EP - 621
JO - Planta
JF - Planta
IS - 4
ER -