Sonochemical coating of magnetite nanoparticles with silica

Feng Dang, Naoya Enomoto, Junichi Hojo, Keiji Enpuku

Research output: Contribution to journalArticlepeer-review

49 Citations (Scopus)

Abstract

Magnetite nanoparticles were coated with silica through the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) under ultrasonic irradiation. The ultrasonic irradiation was used to prevent the agglomeration of the magnetite particles and accelerate the hydrolysis and condensation of TEOS. TEM, DLS, XRF, VSM, TG and sedimentation test were used to characterize the silica-coated magnetite particles. The dispersibility of silica-coated magnetite particles in aqueous solution was improved significantly and the agglomerate particle size was decreased to 110 nm. It was found that the agglomerate particle size of silica-coated magnetite particles was mainly decided by the coating temperature and the pH value in the silica-coating process. The weight ratio of silica in silica-coated magnetite particles was mainly decided by the pH value in the silica-coating process. The dispersibility of silica-coated magnetite particles was mainly decided by the agglomerate particle size of the suspension. The oxidation of magnetite particles in air was limited through the coated silica. The magnetism of silica-coated magnetite particles decreased slightly after silica-coating.

Original languageEnglish
Pages (from-to)193-199
Number of pages7
JournalUltrasonics Sonochemistry
Volume17
Issue number1
DOIs
Publication statusPublished - Jan 2010

All Science Journal Classification (ASJC) codes

  • Chemical Engineering (miscellaneous)
  • Environmental Chemistry
  • Radiology Nuclear Medicine and imaging
  • Acoustics and Ultrasonics
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Sonochemical coating of magnetite nanoparticles with silica'. Together they form a unique fingerprint.

Cite this