Simultaneous arsenic and iron oxidation for one-step scorodite crystallization using mn oxide

Ryohei Nishi, Santisak Kitjanukit, Taiki Kondo, Naoko Okibe

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


The necessity of arsenic (As) removal from metallurgical wastewaters is increasing. Despite its wide recognition as a natural oxidant, the utility of Mn oxide for scorodite production is mostly unknown. In acidic solutions containing both As(III) and Fe2+, simultaneous oxidation of the two progressed by MnO2 and the resultant As(V) and Fe3+ triggered the formation of crystalline scorodite (FeAsO4·2H2O). At 0.5% or 0.25% MnO2, 98% or 91% As was immobilized by day 8. The resultant scorodite was sufficiently stable according to the TCLP test, compared to the regulatory level in US and Chile (5 mg/L): 0.11 « 0.01 mg/L at 0.5% MnO2, 0.78 « 0.05 mg/L at 0.25% MnO2. For the oxidation of As(III) and Fe2+, 54% (at 0.5% MnO2) or 14% (at 0.25% MnO2) of initially added MnO2 remained undissolved and the rest dissolved in the post As(III) treatment solution. For the Mn recycling purpose, the combination of Mn2+-oxidizing bacteria and biogenic birnessite (as homogeneous seed crystal) was used to recover up to 99% of dissolved Mn2+ as biogenic birnessite ((Na, Ca)0.5(MnIV, MnIII)2O4·1.5H2O), which can be utilized for the oxidation treatment of more dilute As(III) solutions at neutral pH. Although further optimization is necessary, the overall finding in this study indicated that Mn oxide could be utilized as a recyclable oxidant source for different As(III) treatment systems.

Original languageEnglish
Pages (from-to)1791-1797
Number of pages7
JournalMaterials Transactions
Issue number12
Publication statusPublished - 2021

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Simultaneous arsenic and iron oxidation for one-step scorodite crystallization using mn oxide'. Together they form a unique fingerprint.

Cite this