Abstract
A new B12-PIL/rGO hybrid was prepared successfully through immobilizing a B12 derivative on the surface of poly(ionic liquid) (PIL)-modified reduced graphene oxide (rGO) by electrostatic attraction and π-π stacking attraction among the different components. The hybrid catalyst showed an enhanced photocatalytic activity in the presence of Ru(bpy)32+ for 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) dechlorination with ∼100% conversion. Especially, the yield of didechlorinated products could reach 78% after 1 h of visible light irradiation, which should be attributed to a synergistic effect of B12, rGO and PIL in B12-PIL/rGO, including their respective catalytic performance, the excellent electron transport of rGO and the concentration of DDT and 1,1-bis(4-chlorophenyl)-2,2-dichloroethane (DDD) on the surface of B12-PIL/rGO. Furthermore, the hybrid catalyst was easily recycled for use without obvious loss of catalytic activity.
Original language | English |
---|---|
Pages (from-to) | 19197-19204 |
Number of pages | 8 |
Journal | RSC Advances |
Volume | 7 |
Issue number | 31 |
DOIs | |
Publication status | Published - 2017 |
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Chemical Engineering(all)