Shock reflection in axisymmetric internal flows

Ben Shoesmith, Sannu Mölder, Hideaki Ogawa, Evgeny Timofeev

Research output: Chapter in Book/Report/Conference proceedingChapter (peer-reviewed)peer-review

Abstract

The flow downstream of an axisymmetric conical shock wave, with a downstream pointing apex, can be predicted by solving the Taylor-Maccoll equations. Previous research, however, has suggested that these theoretical flowfields are not fully realisable in practice, and that a Mach reflection forms towards the centreline of the flow. This phenomenon is investigated for the case where the freestream Mach number is 3.0 and the shock angle is 150֯ . A range of complementary prediction techniques that include the solution to the Taylor-Maccoll equations, the method of characteristics, curved shock theory and CFD, are used to gain insight into this flow. The case where a cylindrical centrebody is placed along the axis of symmetry is studied for several values of centrebody radius that are expected to produce regular reflection at the centrebody surface. An analysis of pressure gradients suggests that the flowfield downstream of the reflected shock does not contribute to the process of transition from regular to Mach reflection at these conditions.
Original languageEnglish
Title of host publicationShock Wave Interactions
Pages355-366
Publication statusPublished - 2018

Fingerprint

Dive into the research topics of 'Shock reflection in axisymmetric internal flows'. Together they form a unique fingerprint.

Cite this