Abstract
The influence of plastic strain on the shape, size and crystallographic orientation of ferrite (α) grains formed at the grain boundaries of the deformed austenite (γ) was studied in a 0.17C-0.3Si-1.5Mn steel. Specimens with a coarse γ grain size of 300 μm were compressed at 1023 K and cooled at 10 K/s. When the plastic strain increased to 0.4, the shape of α grains changed from plate like to equiaxed, and the average length of α grains decreased from 12 to 6 μm. However, the average length did not change in the larger plastic strains up to 1.1. On the other hand, the average thickness of α grains was constant regardless of the plastic strain. The crystallographic orientations of the α grains formed at one γ grain boundary were almost the same when the plastic strain was smaller than 0.2 and the α grain shape was plate like. However, the orientations were widely distributed, and most of the α/α boundaries were high angle ones, when the plastic strain was larger than 0.4 and the α grain shape was equiaxed. The shape change and α grain refinement by the deformation resulted from the wide distribution of crystallographic orientations of α grains rather than from the increase in the nucleation rate. The wide distribution of crystallographic orientation of α grains is closely associated with the serrated austenite grain boundaries induced by the deformation.
Original language | English |
---|---|
Pages (from-to) | 807-814 |
Number of pages | 8 |
Journal | Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan |
Volume | 86 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2000 |
All Science Journal Classification (ASJC) codes
- Condensed Matter Physics
- Physical and Theoretical Chemistry
- Metals and Alloys
- Materials Chemistry