Sensory feedback attitude control for a grasped object by a multi-fingered hand-arm system

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

This paper proposes a novel method for stable grasping and attitude regulation of an object using a multi-fingered hand-arm system. The proposed method is based on a simple sensory-feedback control using the information of an object attitude, and any mathematically complicated computation, such as calculation of inverse dynamics and kinematics, are not required. In addition, the stability of the overall system applied this method is verified. Firstly, nonholonomic rolling constraints between a multi-fingered hand-arm system and an object are formulated. Then, a novel control method for stable grasping and attitude regulation of the grasped object is proposed. It is assumed that information of the attitude of the object is available in real time by external sensors, such as vision, force, tactile sensors, and so on. Next, the stability of the overall system is verified by analyzing the closed-loop dynamics. Finally, it is demonstrated through numerical simulations that our proposed method enables to grasp the object with arbitrary shape, and regulate the attitude of the object stably.

Original languageEnglish
Title of host publication2010 IEEE International Conference on Robotics and Biomimetics, ROBIO 2010
Pages1542-1548
Number of pages7
DOIs
Publication statusPublished - 2010
Event2010 IEEE International Conference on Robotics and Biomimetics, ROBIO 2010 - Tianjin, China
Duration: Dec 14 2010Dec 18 2010

Publication series

Name2010 IEEE International Conference on Robotics and Biomimetics, ROBIO 2010

Other

Other2010 IEEE International Conference on Robotics and Biomimetics, ROBIO 2010
Country/TerritoryChina
CityTianjin
Period12/14/1012/18/10

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Biotechnology
  • Human-Computer Interaction

Fingerprint

Dive into the research topics of 'Sensory feedback attitude control for a grasped object by a multi-fingered hand-arm system'. Together they form a unique fingerprint.

Cite this