TY - JOUR
T1 - Semimetallic Two-Dimensional TiB12
T2 - Improved Stability and Electronic Properties Tunable by Biaxial Strain
AU - Wang, Junjie
AU - Khazaei, Mohammad
AU - Arai, Masao
AU - Umezawa, Naoto
AU - Tada, Tomofumi
AU - Hosono, Hideo
N1 - Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/7/25
Y1 - 2017/7/25
N2 - Recently, the successful synthesis of two-dimensional (2D) boron on metallic surfaces has motivated great interest in improving the stability of 2D boron to allow the realization of promising materials. Through the use of an ab initio evolutionary search algorithm, we have discovered a series of TiBx (2 ≤ x ≤ 16) structures that consist of earth-abundant titanium and boron atoms in 2D arrangements. These structures are greatly stabilized by electron transfer from Ti to B, therefore, leading to much better stability than the 2D boron sheets proposed so far. In particular, TiB12 has a low enough energy to make it competitive to a mixture of the well-known TiB2 compound and a 2D α-boron sheet and exhibits a quasi-Dirac point with a 0.02 eV gap. Interestingly, the work function and conductivity of this 2D TiB12 material are calculated to be tunable through the application of biaxial strain. The possibility of synthesis and novel electronic properties expected for 2D TiB12 render it a promising new 2D material for nanoelectronic applications.
AB - Recently, the successful synthesis of two-dimensional (2D) boron on metallic surfaces has motivated great interest in improving the stability of 2D boron to allow the realization of promising materials. Through the use of an ab initio evolutionary search algorithm, we have discovered a series of TiBx (2 ≤ x ≤ 16) structures that consist of earth-abundant titanium and boron atoms in 2D arrangements. These structures are greatly stabilized by electron transfer from Ti to B, therefore, leading to much better stability than the 2D boron sheets proposed so far. In particular, TiB12 has a low enough energy to make it competitive to a mixture of the well-known TiB2 compound and a 2D α-boron sheet and exhibits a quasi-Dirac point with a 0.02 eV gap. Interestingly, the work function and conductivity of this 2D TiB12 material are calculated to be tunable through the application of biaxial strain. The possibility of synthesis and novel electronic properties expected for 2D TiB12 render it a promising new 2D material for nanoelectronic applications.
UR - http://www.scopus.com/inward/record.url?scp=85025823757&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85025823757&partnerID=8YFLogxK
U2 - 10.1021/acs.chemmater.7b01433
DO - 10.1021/acs.chemmater.7b01433
M3 - Article
AN - SCOPUS:85025823757
SN - 0897-4756
VL - 29
SP - 5922
EP - 5930
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 14
ER -