Self-Activated surface dynamics in gold catalysts under reaction environments

Naoto Kamiuchi, Keju Sun, Ryotaro Aso, Masakazu Tane, Takehiro Tamaoka, Hideto Yoshida, Seiji Takeda

Research output: Contribution to journalArticlepeer-review

34 Citations (Scopus)


Nanoporous gold (NPG) with sponge-like structures has been studied by atomic-scale and microsecond-resolution environmental transmission electron microscopy (ETEM) combined with ab initio energy calculations. Peculiar surface dynamics were found in the reaction environment for the oxidation of CO at room temperature, involving residual silver in the NPG leaves as well as gold and oxygen atoms, especially on {110} facets. The NPG is thus classified as a novel self-Activating catalyst. The essential structure unit for catalytic activity was identified as Au-AgO surface clusters, implying that the NPG is regarded as a nano-structured silver oxide catalyst supported on the matrix of NPG, or an inverse catalyst of a supported gold nanoparticulate (AuNP) catalyst. Hence, the catalytically active structure in the gold catalysts (supported AuNP and NPG catalysts) can now be experimentally unified in low-Temperature CO oxidation, a step forward towards elucidating the fascinating catalysis mechanism of gold.

Original languageEnglish
Article number2060
JournalNature communications
Issue number1
Publication statusPublished - Dec 1 2018
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)


Dive into the research topics of 'Self-Activated surface dynamics in gold catalysts under reaction environments'. Together they form a unique fingerprint.

Cite this