Abstract
Edge is a type of valuable clues for scene character detection task. Generally, the existing edge-based methods rely on the assumption of straight text line to prune away the non-character candidates. This paper proposes a new edge-based method, called edge-ray filter, to detect the scene character. The main contribution of the proposed method lies in filtering out complex backgrounds by fully utilizing the essential spatial layout of edges instead of the assumption of straight text line. Edges are extracted by a combination of Canny and Edge Preserving Smoothing Filter (EPSF). To effectively boost the filtering strength of the designed edge-ray filter, we employ a new Edge Quasi-Connectivity Analysis (EQCA) to unify complex edges as well as contour of broken character. Label Histogram Analysis (LHA) then filters out non-character edges and redundant rays through setting proper thresholds. Finally, two frequently-used heuristic rules, namely aspect ratio and occupation, are exploited to wipe off distinct false alarms. In addition to have the ability to handle special scenarios, the proposed method can accommodate dark-on-bright and bright-on-dark characters simultaneously, and provides accurate character segmentation masks. We perform experiments on the benchmark ICDAR 2011 Robust Reading Competition dataset as well as scene images with special scenarios. The experimental results demonstrate the validity of our proposal.
Original language | English |
---|---|
Article number | 6628664 |
Pages (from-to) | 462-466 |
Number of pages | 5 |
Journal | Proceedings of the International Conference on Document Analysis and Recognition, ICDAR |
DOIs | |
Publication status | Published - 2013 |
Event | 12th International Conference on Document Analysis and Recognition, ICDAR 2013 - Washington, DC, United States Duration: Aug 25 2013 → Aug 28 2013 |
All Science Journal Classification (ASJC) codes
- Computer Vision and Pattern Recognition