Roles of Gonadotropin Receptors in Sexual Development of Medaka

Takeshi Kitano, Tomoaki Takenaka, Hisanori Takagi, Yasutoshi Yoshiura, Yukinori Kazeto, Toshiaki Hirai, Koki Mukai, Ryo Nozu

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)


The gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), are secreted from the pituitary and bind to the FSH receptor (FSHR) and LH receptor (LHR) to regulate gonadal development in vertebrates. Previously, using fshr-knockout (KO) medaka (Oryzias latipes), we demonstrated that FSH regulates ovarian development by elevating estrogen levels. However, the lhr-KO phenotype in medaka is poorly characterized. Here, we generated lhr-KO medaka using the transcription activator-like effector nuclease (TALEN) technique. We analyzed its phenotype and that of fshr-KO, lhr;fshr double-heterozygotes (double-hetero), and double-KO fish. All genetically male medaka displayed normal testes and were fertile, whereas fshr-KO and double-KO genetically female fish displayed small ovaries containing many early pre-vitellogenic oocytes and were infertile. Although lhr-KO genetically female fish had normal ovaries with full-grown oocytes, ovulation did not occur. Levels of 17α,20β-dihydroxy-4-pregnen-3-one, which is required for meiotic maturation of oocytes and sperm maturation in teleost fish, were significantly decreased in all KO female medaka ovaries except for double-heteros. Further, 17β-estradiol levels in fshr-KO and double-KO ovaries were significantly lower than those in double-heteros. These findings indicate that LH is necessary for oocyte maturation and FSH is necessary for follicle development, but that neither are essential for spermatogenesis in medaka.

Original languageEnglish
Article number387
Issue number3
Publication statusPublished - Feb 1 2022

All Science Journal Classification (ASJC) codes

  • General Medicine


Dive into the research topics of 'Roles of Gonadotropin Receptors in Sexual Development of Medaka'. Together they form a unique fingerprint.

Cite this