TY - JOUR
T1 - Role of PAF receptor in proinflammatory cytokine expression in the dorsal root ganglion and tactile allodynia in a rodent model of neuropathic pain
AU - Hasegawa, Shigeo
AU - Kohro, Yuta
AU - Shiratori, Miho
AU - Ishii, Satoshi
AU - Shimizu, Takao
AU - Tsuda, Makoto
AU - Inoue, Kazuhide
PY - 2010
Y1 - 2010
N2 - Background: Neuropathic pain is a highly debilitating chronic pain following damage to peripheral sensory neurons and is often resistant to all treatments currently available, including opioids. We have previously shown that peripheral nerve injury induces activation of cytosolic phospholipase A2 (cPLA2) in injured dorsal root ganglion (DRG) neurons that contribute to tactile allodynia, a hallmark of neuropathic pain. However, lipid mediators downstream of cPLA2 activation to produce tactile allodynia remain to be determined. Principal Findings: Here we provide evidence that platelet-activating factor (PAF) is a potential candidate. Pharmacological blockade of PAF receptors (PAFRs) reduced the development and expression of tactile allodynia following nerve injury. The expression of PAFR mRNA was increased in the DRG ipsilateral to nerve injury, which was seen mainly in macrophages. Furthermore, mice lacking PAFRs showed a reduction of nerve injury-induced tactile allodynia and, interestingly, a marked suppression of upregulation of tumor necrosis factor α (TNFα) and interleukin-1β (IL-1β) expression in the injured DRG, crucial proinflammatory cytokines involved in pain hypersensitivity. Conversely, a single injection of PAF near the DRG of nai{dotless}̈ve rats caused a decrease in the paw withdrawal threshold to mechanical stimulation in a dose-dependent manner and an increase in the expression of mRNAs for TNFα and IL-1β, both of which were inhibited by pretreatment with a PAFR antagonist. Conclusions: Our results indicate that the PAF/PAFR system has an important role in production of TNFα and IL-1β in the DRG and tactile allodynia following peripheral nerve injury and suggest that blocking PAFRs may be a viable therapeutic strategy for treating neuropathic pain.
AB - Background: Neuropathic pain is a highly debilitating chronic pain following damage to peripheral sensory neurons and is often resistant to all treatments currently available, including opioids. We have previously shown that peripheral nerve injury induces activation of cytosolic phospholipase A2 (cPLA2) in injured dorsal root ganglion (DRG) neurons that contribute to tactile allodynia, a hallmark of neuropathic pain. However, lipid mediators downstream of cPLA2 activation to produce tactile allodynia remain to be determined. Principal Findings: Here we provide evidence that platelet-activating factor (PAF) is a potential candidate. Pharmacological blockade of PAF receptors (PAFRs) reduced the development and expression of tactile allodynia following nerve injury. The expression of PAFR mRNA was increased in the DRG ipsilateral to nerve injury, which was seen mainly in macrophages. Furthermore, mice lacking PAFRs showed a reduction of nerve injury-induced tactile allodynia and, interestingly, a marked suppression of upregulation of tumor necrosis factor α (TNFα) and interleukin-1β (IL-1β) expression in the injured DRG, crucial proinflammatory cytokines involved in pain hypersensitivity. Conversely, a single injection of PAF near the DRG of nai{dotless}̈ve rats caused a decrease in the paw withdrawal threshold to mechanical stimulation in a dose-dependent manner and an increase in the expression of mRNAs for TNFα and IL-1β, both of which were inhibited by pretreatment with a PAFR antagonist. Conclusions: Our results indicate that the PAF/PAFR system has an important role in production of TNFα and IL-1β in the DRG and tactile allodynia following peripheral nerve injury and suggest that blocking PAFRs may be a viable therapeutic strategy for treating neuropathic pain.
UR - http://www.scopus.com/inward/record.url?scp=77956288531&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77956288531&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0010467
DO - 10.1371/journal.pone.0010467
M3 - Article
C2 - 20454616
AN - SCOPUS:77956288531
SN - 1932-6203
VL - 5
JO - PloS one
JF - PloS one
IS - 5
M1 - e10467
ER -