TY - GEN
T1 - Role of delamination fracture for enhanced impact toughness in 0.05 %P doped high strength steel with ultrafine elongated grain structure
AU - Jafari, Meysam
AU - Kimura, Yuuji
AU - Tsuzaki, Kaneaki
N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2012
Y1 - 2012
N2 - Ultrafine elongated grain (UFEG) structures with strong 〈110〉// rolling direction (RD) fiber deformation texture were produced by warm caliber-rolling at 773 K, namely tempforming in the 1200 MPa-class medium-carbon low-alloy steel with phosphorous (P) contents of 0.001 and 0.053 mass%. Charpy impact tests were performed at temperature range of -196 to 150 °C on the UFEG structure. Regardless of P content, high upper shelf energy about 145 J and a very low ductile to brittle transition temperature (DBTT) of around -175 °C were obtained. P segregation embrittlement completely disappeared in the 0.053 %P steel and both steels showed ductile fracture on the planes normal to RD at temperature range of -150 to 150 °C. The main reason for the high upper shelf energy and very low DBTT in the 0.053 %P steel would be delamination fracture along RD when both 0.001 and 0.053 %P steels showed quite similar microstructures including texture. Since the occurrence of delamination requires relatively weak interfaces or planes, P segregated to the ferrite grain boundaries and interfaces of cementite particles-ferrite matrix and made them feasible paths for crack branching and consequently delamination occurred. We showed in this work the advantage of delamination (crack arrester-type) on the high absorbed energy obtained by 0.053 %P steel in comparison with 0.001 %P steel.
AB - Ultrafine elongated grain (UFEG) structures with strong 〈110〉// rolling direction (RD) fiber deformation texture were produced by warm caliber-rolling at 773 K, namely tempforming in the 1200 MPa-class medium-carbon low-alloy steel with phosphorous (P) contents of 0.001 and 0.053 mass%. Charpy impact tests were performed at temperature range of -196 to 150 °C on the UFEG structure. Regardless of P content, high upper shelf energy about 145 J and a very low ductile to brittle transition temperature (DBTT) of around -175 °C were obtained. P segregation embrittlement completely disappeared in the 0.053 %P steel and both steels showed ductile fracture on the planes normal to RD at temperature range of -150 to 150 °C. The main reason for the high upper shelf energy and very low DBTT in the 0.053 %P steel would be delamination fracture along RD when both 0.001 and 0.053 %P steels showed quite similar microstructures including texture. Since the occurrence of delamination requires relatively weak interfaces or planes, P segregated to the ferrite grain boundaries and interfaces of cementite particles-ferrite matrix and made them feasible paths for crack branching and consequently delamination occurred. We showed in this work the advantage of delamination (crack arrester-type) on the high absorbed energy obtained by 0.053 %P steel in comparison with 0.001 %P steel.
UR - http://www.scopus.com/inward/record.url?scp=84855245340&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84855245340&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/AMR.409.231
DO - 10.4028/www.scientific.net/AMR.409.231
M3 - Conference contribution
AN - SCOPUS:84855245340
SN - 9783037853047
T3 - Advanced Materials Research
SP - 231
EP - 236
BT - THERMEC 2011 Supplement
T2 - 7th International Conference on Processing and Manufacturing of Advanced Materials, THERMEC'2011
Y2 - 1 August 2011 through 5 August 2011
ER -