TY - JOUR
T1 - Reversal of oxidant-mediated biochemical injury and prompt functional recovery after prolonged single-dose crystalloid cardioplegic arrest in the infantile piglet heart by terminal warm-blood cardioplegia supplemented with phosphodiesterase III inhibitor
AU - Kinouchi, Katsushi
AU - Morita, Kiyozo
AU - Ko, Yoshihiro
AU - Nagahori, Ryuichi
AU - Shinohara, Gen
AU - Abe, Takayuki
AU - Hashimoto, Kazuhiro
PY - 2012/2
Y1 - 2012/2
N2 - Purpose: The benefit of terminal blood cardioplegia (TWBCP) is insufficient after prolonged ischemia associated with inevitable oxidant-mediated injury by this modality alone. We tested the effects of TWBCP supplemented with high-dose olprinone, which is a phosphodiesterase III inhibitor, a clinically available compound with the potential to reduce oxidant stress and calcium overload. We evaluated the effects with respect to avoiding oxidant-mediated myocardial reperfusion injury and prompt functional recovery after prolonged single-dose crystalloid cardioplegic arrest in a infantile piglet cardiopulmonary bypass (CPB) model. Methods: Fifteen piglets were subjected to 90 min of cardioplegic arrest on CPB, followed by 30 min of reperfusion. In group I, uncontrolled reperfusion was applied without receiving TWBCP; in group II, TWBCP was given; in group III, TWBCP was supplemented with olprinone (3 μg/ml). Myocardial performance was evaluated before and after CPB by a left ventricular (LV) function curve and pressure-volume loop analyses. Biochemical injury was determined by measurements of troponin-T and lipid peroxide (LPO) in coronary sinus blood. Results: Group III showed significant LV performance recovery (group I, 26.5% ± 5.1%; group II, 42.9% ± 10.8%; group III, 81.9% ± 24.5%, P < 0.01 vs. groups I and II), associated with significant reduction of troponin-T and LPO at the reperfusion phase. No piglets in group III needed electrical cardioversion. Conclusion: We concluded that TWBCP with olprinone reduces myocardial reperfusion injury by reducing oxidant-mediated lipid peroxidation, and it accelerates prompt and persistent LV functional recovery with suppression of reperfusion arrhythmia.
AB - Purpose: The benefit of terminal blood cardioplegia (TWBCP) is insufficient after prolonged ischemia associated with inevitable oxidant-mediated injury by this modality alone. We tested the effects of TWBCP supplemented with high-dose olprinone, which is a phosphodiesterase III inhibitor, a clinically available compound with the potential to reduce oxidant stress and calcium overload. We evaluated the effects with respect to avoiding oxidant-mediated myocardial reperfusion injury and prompt functional recovery after prolonged single-dose crystalloid cardioplegic arrest in a infantile piglet cardiopulmonary bypass (CPB) model. Methods: Fifteen piglets were subjected to 90 min of cardioplegic arrest on CPB, followed by 30 min of reperfusion. In group I, uncontrolled reperfusion was applied without receiving TWBCP; in group II, TWBCP was given; in group III, TWBCP was supplemented with olprinone (3 μg/ml). Myocardial performance was evaluated before and after CPB by a left ventricular (LV) function curve and pressure-volume loop analyses. Biochemical injury was determined by measurements of troponin-T and lipid peroxide (LPO) in coronary sinus blood. Results: Group III showed significant LV performance recovery (group I, 26.5% ± 5.1%; group II, 42.9% ± 10.8%; group III, 81.9% ± 24.5%, P < 0.01 vs. groups I and II), associated with significant reduction of troponin-T and LPO at the reperfusion phase. No piglets in group III needed electrical cardioversion. Conclusion: We concluded that TWBCP with olprinone reduces myocardial reperfusion injury by reducing oxidant-mediated lipid peroxidation, and it accelerates prompt and persistent LV functional recovery with suppression of reperfusion arrhythmia.
UR - http://www.scopus.com/inward/record.url?scp=84863411632&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863411632&partnerID=8YFLogxK
U2 - 10.1007/s11748-011-0810-4
DO - 10.1007/s11748-011-0810-4
M3 - Article
C2 - 22327851
AN - SCOPUS:84863411632
SN - 1863-6705
VL - 60
SP - 73
EP - 81
JO - General thoracic and cardiovascular surgery
JF - General thoracic and cardiovascular surgery
IS - 2
ER -