TY - JOUR
T1 - Removal of harmful components from MSWI fly ash as a pretreatment approach to enhance waste recycling
AU - Wei, Yunmei
AU - Liu, Sijie
AU - Yao, Ruixuan
AU - Chen, Shuang
AU - Gao, Junmin
AU - Shimaoka, Takayuki
N1 - Funding Information:
This work was supported by the National Natural Science Foundation of China (Grant No. 51308564 ).
Publisher Copyright:
© 2022 Elsevier Ltd
PY - 2022/8/1
Y1 - 2022/8/1
N2 - Municipal solid waste incineration (MSWI) fly ash contains many harmful components that may limit its potential for recycling. An effective pretreatment is therefore required before any recycling can be implemented. In this study, the effects of four pretreatment methods (water washing, CO2-aided washing, CO32–-aided washing, and CO2 and CO32–-aided washing) on the extraction behavior of chloride, sulfate, and heavy metals were evaluated. Water washing was found to be effective for the extraction of all easily and moderately soluble Cl-bearing salts, achieving Cl extraction ratios of 88%, 90%, and 96% for ash from Chongqing (CQ), Qingdao (QD), and Tianjin (TJ), respectively. Injection of CO2 during washing facilitated decomposition of the hardly soluble Cl-bearing salts, increasing the Cl extraction efficiency by 6% for CQ ash and 9% for QD ash. However, for the TJ ash that contained few insoluble Cl-bearing minerals, CO2 injection decreased the Cl extraction rate. The addition of CO32– had a negative influence on Cl extraction for all ashes, but it slightly promoted sulfate extraction. Despite the high Cl removal rate, only 23–37% of the sulfate and 0.1–12% of heavy metals were removed. Overall, water-based pretreatment, especially CO2-aided washing, significantly altered the physical, chemical, and mineralogical characteristics of the fly ash, making it more suitable for recycling. Consequently, the blending ratio of the fly ash for cement clinker manufacture increased from 0.2 to 0.3% in the raw ash to 3.5–5.5% in the treated ash, enabling the extensive use of ash materials.
AB - Municipal solid waste incineration (MSWI) fly ash contains many harmful components that may limit its potential for recycling. An effective pretreatment is therefore required before any recycling can be implemented. In this study, the effects of four pretreatment methods (water washing, CO2-aided washing, CO32–-aided washing, and CO2 and CO32–-aided washing) on the extraction behavior of chloride, sulfate, and heavy metals were evaluated. Water washing was found to be effective for the extraction of all easily and moderately soluble Cl-bearing salts, achieving Cl extraction ratios of 88%, 90%, and 96% for ash from Chongqing (CQ), Qingdao (QD), and Tianjin (TJ), respectively. Injection of CO2 during washing facilitated decomposition of the hardly soluble Cl-bearing salts, increasing the Cl extraction efficiency by 6% for CQ ash and 9% for QD ash. However, for the TJ ash that contained few insoluble Cl-bearing minerals, CO2 injection decreased the Cl extraction rate. The addition of CO32– had a negative influence on Cl extraction for all ashes, but it slightly promoted sulfate extraction. Despite the high Cl removal rate, only 23–37% of the sulfate and 0.1–12% of heavy metals were removed. Overall, water-based pretreatment, especially CO2-aided washing, significantly altered the physical, chemical, and mineralogical characteristics of the fly ash, making it more suitable for recycling. Consequently, the blending ratio of the fly ash for cement clinker manufacture increased from 0.2 to 0.3% in the raw ash to 3.5–5.5% in the treated ash, enabling the extensive use of ash materials.
UR - http://www.scopus.com/inward/record.url?scp=85133940224&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85133940224&partnerID=8YFLogxK
U2 - 10.1016/j.wasman.2022.06.041
DO - 10.1016/j.wasman.2022.06.041
M3 - Article
C2 - 35810727
AN - SCOPUS:85133940224
SN - 0956-053X
VL - 150
SP - 110
EP - 121
JO - Waste Management
JF - Waste Management
ER -