RelB-induced expression of Cot, an MAP3K family member, rescues RANKL-induced osteoclastogenesis in alymphoplasia mice by promoting NF-κB2 processing by IKKα

Rei Taniguchi, Hidefumi Fukushima, Kenji Osawa, Toshimasa Maruyama, Hisataka Yasuda, Falk Weih, Takahiro Doi, Kenshi Maki, Eijiro Jimi

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

The alternative nuclear factor-κB (NF-κB) pathway, mainly the RelB-p52 heterodimer, plays important roles in bone metabolism through an unknown mechanism. We have previously reported that alymphoplasia (aly/aly) mice, which lack active NF-κB-inducing kinase (NIK), show mild osteopetrosis due to the inhibition of osteoclastogenesis. p100 retains RelB in the cytoplasm and inhibits RANKL-induced osteoclastogenesis in aly/aly cells. Furthermore, the overexpression of RelB in aly/aly cells rescues RANKL-induced osteoclastogenesis by inducing p100 processing. In contrast, the overexpression of p65 in aly/aly cells has no effect. However, the overexpression of RelB fails to rescue RANKL-induced osteoclastogenesis in the presence of p100ΔGRR, which cannot be processed to p52, suggesting that p100 processing is a key step in RelB-rescued, RANKL-induced osteoclastogenesis in aly/aly cells. In this study, Cot (cancer Osaka thyroid), an MAP3K, was up-regulated by RelB overexpression. Analysis of the Cot promoter demonstrated that p65 and RelB bound to the distal NF-κB-binding site and that RelB but not p65 bound to the proximal NF-κB-binding site in the Cot promoter. The knocking down of Cot expression significantly reduced the RANKL-induced osteoclastogenesis induced by RelB overexpression. The phosphorylation of IKKα at threonine 23 and its kinase activity were indispensable for the processing of p100 and osteoclastogenesis by RelB-induced Cot. Finally, constitutively activated Akt enhanced osteoclastogenesis by RelB-induced Cot, and a dominant-negative form of Akt significantly inhibited it. Taken together, these results indicate that the overexpression of RelB restores RANKL-induced osteoclastogenesis by activation of Akt/Cot/IKKα-induced p100 processing.

Original languageEnglish
Pages (from-to)7349-7361
Number of pages13
JournalJournal of Biological Chemistry
Volume289
Issue number11
DOIs
Publication statusPublished - Mar 14 2014
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'RelB-induced expression of Cot, an MAP3K family member, rescues RANKL-induced osteoclastogenesis in alymphoplasia mice by promoting NF-κB2 processing by IKKα'. Together they form a unique fingerprint.

Cite this