TY - JOUR
T1 - Relationship between radiosensitivity and Nrf2 target gene expression in human hematopoietic stem cells
AU - Kato, Kengo
AU - Takahashi, Kenji
AU - Monzen, Satoru
AU - Yamamoto, Hiroyuki
AU - Maruyama, Atsushi
AU - Itoh, Ken
AU - Kashiwakura, Ikuo
PY - 2010/8
Y1 - 2010/8
N2 - NFE2-related factor 2 (Nrf2), which belongs to the cap "n" collar family of basic region leucine zipper transcription factors, is a key protein in the coordinated transcriptional induction of expression of various antioxidant genes. The purpose of this study was to analyze the expression of Nrf2 target genes, such as heme oxygenase 1 (HO-1), ferritin heavy polypeptide 1 (FTH1), NAD(P)H dehydrogenase, quinone 1 (NQO1), glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, glutathione reductase (GSR) and thioredoxin reductase 1 (TXNRD1), after X irradiation of CD34 cells that were prepared from human placental/umbilical cord blood hematopoietic stem cells (HSCs). We evaluated the relationship between radiosensitivity and expression of Nrf2 target genes in HSCs. The number of colony-forming cells derived from 2-Gy-irradiated HSCs decreased to approximately 20 of the nonirradiated control. At the same time, the mRNA expression of HO-1, FTH1, NQO1, GSR and TXNRD1 was significantly increased after X irradiation. A statistically significant negative correlation was observed between the surviving fraction of HSCs and the intrinsic NQO1 mRNA expression, indicating that HSCs in which NQO1 mRNA levels are low may also be radioresistant. The present results suggest that the antioxidant system associated with Nrf2 is involved in the radiosensitivity of HSCs.
AB - NFE2-related factor 2 (Nrf2), which belongs to the cap "n" collar family of basic region leucine zipper transcription factors, is a key protein in the coordinated transcriptional induction of expression of various antioxidant genes. The purpose of this study was to analyze the expression of Nrf2 target genes, such as heme oxygenase 1 (HO-1), ferritin heavy polypeptide 1 (FTH1), NAD(P)H dehydrogenase, quinone 1 (NQO1), glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, glutathione reductase (GSR) and thioredoxin reductase 1 (TXNRD1), after X irradiation of CD34 cells that were prepared from human placental/umbilical cord blood hematopoietic stem cells (HSCs). We evaluated the relationship between radiosensitivity and expression of Nrf2 target genes in HSCs. The number of colony-forming cells derived from 2-Gy-irradiated HSCs decreased to approximately 20 of the nonirradiated control. At the same time, the mRNA expression of HO-1, FTH1, NQO1, GSR and TXNRD1 was significantly increased after X irradiation. A statistically significant negative correlation was observed between the surviving fraction of HSCs and the intrinsic NQO1 mRNA expression, indicating that HSCs in which NQO1 mRNA levels are low may also be radioresistant. The present results suggest that the antioxidant system associated with Nrf2 is involved in the radiosensitivity of HSCs.
UR - http://www.scopus.com/inward/record.url?scp=77955125402&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77955125402&partnerID=8YFLogxK
U2 - 10.1667/RR2146.1
DO - 10.1667/RR2146.1
M3 - Article
C2 - 20681784
AN - SCOPUS:77955125402
SN - 0033-7587
VL - 174
SP - 177
EP - 184
JO - Radiation Research
JF - Radiation Research
IS - 2
ER -