Abstract
The relationship between the nanohardness and the microstructures in the Fe-C martensite was studied to understand the contributions of the matrix and the grain boundary to the macroscopic strength. As-quenched martensite was examined for five kinds of Fe-C alloys with various carbon contents in the range of 0.1-0.8 mass%, while quench-tempered martensite was investigated for an Fe-0.4% C alloy. The ratio of the nanohardness to the macrohardness Hn/Hv was much smaller for the Fe-C martensite than those for the single crystals, indicating that there is a significant grain-boundary effect for the martensite. The ratio Hn/Hv of the as-quenched martensite decreased with an increase in the carbon content since the size of the block structure decreased with increasing carbon content. For the quench-tempered specimens, a significant reduction of the grain-boundary effect occured at the tempering temperature of 723 K. It is mainly due to the depression of the locking parameter caused by the disappearance of the film-like carbides on the boundaries.
Original language | English |
---|---|
Pages (from-to) | 1465-1470 |
Number of pages | 6 |
Journal | Journal of Materials Research |
Volume | 18 |
Issue number | 6 |
DOIs | |
Publication status | Published - Jun 2003 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Materials Science(all)
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering