Reinforcement learning for problems with symmetrical restricted states

M. A.S. Kamal, Junichi Murata

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


A reinforcement learning method is proposed that can utilize parts of states and their partial symmetries to solve a problem efficiently. In most cases the action selection does not need considering all the states but only needs looking at parts of states or restricted state of corresponding action. Moreover, restricted states of different actions are symmetrical, and thus the action value function based on restricted states can be shared which further reduces the reinforcement learning problem size. The method is compared, in terms of simulation results and other aspects, with other standard reinforcement learning methods.

Original languageEnglish
Pages (from-to)717-727
Number of pages11
JournalRobotics and Autonomous Systems
Issue number9
Publication statusPublished - Sept 30 2008

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Software
  • General Mathematics
  • Computer Science Applications


Dive into the research topics of 'Reinforcement learning for problems with symmetrical restricted states'. Together they form a unique fingerprint.

Cite this