Regulation of mating type switching by the mating type genes and RME1 in Ogataea polymorpha

Katsuyoshi Yamamoto, Thi N.M. Tran, Kaoru Takegawa, Yoshinobu Kaneko, Hiromi Maekawa

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


Saccharomyces cerevisiae and its closely related yeasts undergo mating type switching by replacing DNA sequences at the active mating type locus (MAT) with one of two silent mating type cassettes. Recently, a novel mode of mating type switching was reported in methylotrophic yeast, including Ogataea polymorpha, which utilizes chromosomal recombination between inverted-repeat sequences flanking two MAT loci. The inversion is highly regulated and occurs only when two requirements are met: haploidy and nutritional starvation. However, links between this information and the mechanism associated with mating type switching are not understood. Here we investigated the roles of transcription factors involved in yeast sexual development, such as mating type genes and the conserved zinc finger protein Rme1. We found that co-presence of mating type a1 and α2 genes was sufficient to prevent mating type switching, suggesting that ploidy information resides solely in the mating type locus. Additionally, RME1 deletion resulted in a reduced rate of switching, and ectopic expression of O. polymorpha RME1 overrode the requirement for starvation to induce MAT inversion. These results suggested that mating type switching in O. polymorpha is likely regulated by two distinct transcriptional programs that are linked to the ploidy and transmission of the starvation signal.

Original languageEnglish
Article number16318
JournalScientific reports
Issue number1
Publication statusPublished - Dec 1 2017

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Regulation of mating type switching by the mating type genes and RME1 in Ogataea polymorpha'. Together they form a unique fingerprint.

Cite this