Regional climatic effects according to different estimations of biogenic volatile organic compounds during the asian summer monsoon

Hyung Jin Kim, Kumiko Takata, Katsunori Tanaka, Ryoji Yamashima, Jun Matsumoto, Kazuyuki Saito, Toshihiko Takemura, Tetsuzo Yasunari

    Research output: Contribution to journalArticlepeer-review


    A series of 60-year numerical experiments starting from 1851 was conducted using a global climate model coupled with an aerosol-cloud-radiation model to investigate the response of the Asian summer monsoon to variations in the secondary organic aerosol (SOA) flux induced by two different estimations of biogenic volatile organic compound (BVOC) emissions. One estimation was obtained from a pre-existing archive and the other was generated by a next-generation model (the Model of Emissions of Gases and Aerosols from Nature, MEGAN). The use of MEGAN resulted in an overall increase of the SOA production through a higher rate of gasto-particle conversion of BVOCs. Consequently, the atmospheric loading of organic carbon (OC) increased due to the contribution of SOA to OC aerosol. The increase of atmospheric OC aerosols was prominent in particular in the Indian subcontinent and Indochina Peninsula (IP) during the pre- and early-monsoon periods because the terrestrial biosphere is the major source of BVOC emissions and the atmospheric aerosol concentration diminishes rapidly with the arrival of monsoon rainfall. As the number of atmospheric OC particles increased, the number concentrations of cloud droplets increased, but their size decreased. These changes represent a combination of aerosol-cloud interactions that were favorable to rainfall suppression. However, the modeled precipitation was slightly enhanced in May over the oceans that surround the Indian subcontinent and IP. Further analysis revealed that a compensating updraft in the surrounding oceans was induced by the thermally-driven downdraft in the IP, which was a result of surface cooling associated with direct OC aerosol radiative forcing, and was able to surpass the aerosolcloud interactions. The co-existence of oceanic ascending motion with the maximum convective available potential energy was also found to be crucial for rainfall formation. Although the model produced statistically significant rainfall changes with locally organized patterns, the suggested pathways should be considered guardedly because in the simulation results, 1) the BVOC-induced aerosol direct effect was marginal; 2) cloud-aerosol interactions were modeldependent; and 3) Asian summer monsoons were biased to a nonnegligible extent.

    Original languageEnglish
    Pages (from-to)423-435
    Number of pages13
    JournalAsia-Pacific Journal of Atmospheric Sciences
    Issue number4
    Publication statusPublished - Aug 2014

    All Science Journal Classification (ASJC) codes

    • Atmospheric Science


    Dive into the research topics of 'Regional climatic effects according to different estimations of biogenic volatile organic compounds during the asian summer monsoon'. Together they form a unique fingerprint.

    Cite this