Redox-regulating sirtuins in aging, caloric restriction, and exercise

Zsolt Radak, Erika Koltai, Albert W. Taylor, Mitsuru Higuchi, Shuzo Kumagai, Hideki Ohno, Sataro Goto, Istvan Boldogh

    Research output: Contribution to journalReview articlepeer-review

    83 Citations (Scopus)

    Abstract

    The consequence of decreased nicotinamide adenine dinucleotide (NAD +) levels as a result of oxidative challenge is altered activity of sirtuins, which, in turn, brings about a wide range of modifications in mammalian cellular metabolism. Sirtuins, especially SIRT1, deacetylate important transcription factors such as p53, forkhead homeobox type O proteins, nuclear factor κB, or peroxisome proliferator-activated receptor γ coactivator 1α (which controls the transcription of pro- and antioxidant enzymes, by which the cellular redox state is affected). The role of SIRT1 in DNA repair is enigmatic, because it activates Ku70 to cope with double-strand breaks, but deacetylation of apurinic/apyrimidinic endonuclease 1 and probably of 8-oxoguanine-DNA glycosylase 1 decreases the activity of these DNA repair enzymes. The protein-stabilizing effects of the NAD+-dependent lysine deacetylases are readily related to housekeeping and redox regulation. The role of sirtuins in caloric restriction (CR)-related longevity in yeast is currently under debate. However, in mammals, it seems certain that sirtuins are involved in many cellular processes that mediate longevity and disease prevention via the effects of CR through the vascular, neuronal, and muscular systems. Regular physical exercise-mediated health promotion also involves sirtuin-regulated pathways including the antioxidant-, macromolecular damage repair-, energy-, mitochondrial function-, and neuronal plasticity-associated pathways. This review critically evaluates these findings and points out the age-associated role of sirtuins.

    Original languageEnglish
    Pages (from-to)87-97
    Number of pages11
    JournalFree Radical Biology and Medicine
    Volume58
    DOIs
    Publication statusPublished - May 2013

    All Science Journal Classification (ASJC) codes

    • Biochemistry
    • Physiology (medical)

    Fingerprint

    Dive into the research topics of 'Redox-regulating sirtuins in aging, caloric restriction, and exercise'. Together they form a unique fingerprint.

    Cite this