TY - JOUR
T1 - Reconstitution and characterization of the unconventional splicing of XBP1u mRNA in vitro
AU - Shinya, Sayoko
AU - Kadokura, Hiroshi
AU - Imagawa, Yusuke
AU - Inoue, Michihiro
AU - Yanagitani, Kota
AU - Kohno, Kenji
N1 - Funding Information:
Grants-in-Aid for Scientific Research on Priority Areas (19058010 to K.K.) and Scientific Research B (20380062 to K.K.) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT); the Research Fellowship for Young Scientists from the Japan Society for the Promotion of Science (09J55502 to S.S.); and the International research fellowship from the Global Center of Excellence program from the Japan Society for the Promotion of Science (to H.K.). Funding for open access charge: The Uehara Memorial Foundation (to K.K.).
PY - 2011/7
Y1 - 2011/7
N2 - Upon endoplasmic reticulum (ER) stress, mammalian cells induce the synthesis of a transcriptional activator XBP1s to alleviate the stress. Under unstressed conditions, the messenger RNA (mRNA) for XBP1s exists in the cytosol as an unspliced precursor form, XBP1u mRNA. Thus, its intron must be removed for the synthesis of XBP1s. Upon ER stress, a stress sensor IRE1α cleaves XBP1u mRNA to initiate the unconventional splicing of XBP1u mRNA on the ER membrane. The liberated two exons are ligated to form the mature XBP1s mRNA. However, the mechanism of this splicing is still obscure mainly because the enzyme that joins XBP1s mRNA halves is unknown. Here, we reconstituted the whole splicing reaction of XBP1u mRNA in vitro. Using this assay, we showed that, consistent with the in vivo studies, mammalian cytosol indeed had RNA ligase that could join XBP1s mRNA halves. Further, the cleavage of XBP1u mRNA with IRE1α generated 2′, 3′-cyclic phosphate structure at the cleavage site. Interestingly, this phosphate was incorporated into XBP1s mRNA by the enzyme in the cytosol to ligate the two exons. These studies reveal the utility of the assay system and the unique properties of the mammalian cytosolic enzyme that can promote the splicing of XBP1u mRNA.
AB - Upon endoplasmic reticulum (ER) stress, mammalian cells induce the synthesis of a transcriptional activator XBP1s to alleviate the stress. Under unstressed conditions, the messenger RNA (mRNA) for XBP1s exists in the cytosol as an unspliced precursor form, XBP1u mRNA. Thus, its intron must be removed for the synthesis of XBP1s. Upon ER stress, a stress sensor IRE1α cleaves XBP1u mRNA to initiate the unconventional splicing of XBP1u mRNA on the ER membrane. The liberated two exons are ligated to form the mature XBP1s mRNA. However, the mechanism of this splicing is still obscure mainly because the enzyme that joins XBP1s mRNA halves is unknown. Here, we reconstituted the whole splicing reaction of XBP1u mRNA in vitro. Using this assay, we showed that, consistent with the in vivo studies, mammalian cytosol indeed had RNA ligase that could join XBP1s mRNA halves. Further, the cleavage of XBP1u mRNA with IRE1α generated 2′, 3′-cyclic phosphate structure at the cleavage site. Interestingly, this phosphate was incorporated into XBP1s mRNA by the enzyme in the cytosol to ligate the two exons. These studies reveal the utility of the assay system and the unique properties of the mammalian cytosolic enzyme that can promote the splicing of XBP1u mRNA.
UR - http://www.scopus.com/inward/record.url?scp=79960272681&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79960272681&partnerID=8YFLogxK
U2 - 10.1093/nar/gkr132
DO - 10.1093/nar/gkr132
M3 - Article
C2 - 21398633
AN - SCOPUS:79960272681
SN - 0305-1048
VL - 39
SP - 5245
EP - 5254
JO - Nucleic acids research
JF - Nucleic acids research
IS - 12
ER -