Recent advances in research on biointerfaces: From cell surfaces to artificial interfaces

Katsutoshi Hori, Shogo Yoshimoto, Tomoko Yoshino, Tamotsu Zako, Gen Hirao, Satoshi Fujita, Chikashi Nakamura, Ayana Yamagishi, Noriho Kamiya

Research output: Contribution to journalReview articlepeer-review

7 Citations (Scopus)


Biointerfaces are regions where biomolecules, cells, and organic materials are exposed to environmental media or come in contact with other biomaterials, cells, and inorganic/organic materials. In this review article, six research topics on biointerfaces are described to show examples of state-of-art research approaches. First, biointerface design of nanoparticles for molecular detection is described. Functionalized gold nanoparticles can be used for sensitive detection of various target molecules, including chemical compounds and biomolecules, such as DNA, proteins, cells, and viruses. Second, the interaction between bacterial cell surfaces and material surfaces, including the introduction of advances in analytical methods and theoretical calculations, are explained as well as their applications to bioprocesses. Third, bioconjugation technologies for localizing functional proteins at biointerfaces are introduced, in particular, by focusing the potential of enzymes as a catalytic tool for designing different types of bioconjugates that function at biointerfaces. Forth topics is focusing on lipid–protein interaction in cell membranes as natural biointerfaces. Examples of membrane lipid engineering are introduced, and it is mentioned how their compositional profiles affect membrane protein functions. Fifth topic is the physical method for molecular delivery across the biointerface being developed currently, such as highly efficient nanoinjection, electroporation, and nanoneedle devices, in which the key is how to perforate the cell membrane. Final topic is the chemical design of lipid- or polymer-based RNA delivery carriers and their behavior on the cell interface, which are currently attracting attention as RNA vaccine technologies targeting COVID-19. Finally, future directions of biointerface studies are presented.

Original languageEnglish
Pages (from-to)195-207
Number of pages13
JournalJournal of Bioscience and Bioengineering
Issue number3
Publication statusPublished - Mar 2022

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Applied Microbiology and Biotechnology


Dive into the research topics of 'Recent advances in research on biointerfaces: From cell surfaces to artificial interfaces'. Together they form a unique fingerprint.

Cite this