Abstract
A novel dislocation reducing mechanism was successfully introduced into the conventional 2-step metalorganic vapor phase epitaxial (MOVPE) growth method of GaN/sapphire wafer by inserting an additional intermediate-temperature (IT)-GaN buffer between the low-temperature (LT)-GaN buffer and the main high-temperature (HT)-GaN layer. During the growth of the IT-GaN buffer, high-density islands with faceted slopes were formed. Vertically propagating dislocations from the GaN/sapphire interface were bent at the faceted slopes so as to gather at the island/island boundaries, where dislocation loops were formed efficiently. Due to such an island induced dislocation control mechanism, the dislocation density was reduced markedly from the 109 cm-2 range to the mid-108 cm-2 range during the growth of the IT-GaN buffer. As a result, the GaN/sapphire wafers with low dislocation density of 3 × 108 cm-2 were successfully grown by such a 3-step MOVPE method, whereas high-density dislocations (1 × 109 cm-2) remained in the final GaN/sapphire wafers grown by the conventional 2-step growth method without dislocation control.
Original language | English |
---|---|
Pages (from-to) | 2767-2772 |
Number of pages | 6 |
Journal | Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers |
Volume | 42 |
Issue number | 5 A |
DOIs | |
Publication status | Published - May 2003 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Engineering(all)
- Physics and Astronomy(all)