TY - JOUR
T1 - Reactive oxygen species, nitric oxide, and their interactions play different roles in Cupressus lusitanica cell death and phytoalexin biosynthesis
AU - Zhao, Jian
AU - Fujita, Koki
AU - Sakai, Kokki
PY - 2007/7
Y1 - 2007/7
N2 - • β-Thujaplicin is a natural troponoid with strong antifungal, antiviral, and anticancer activities. β-Thujaplicin production in yeast elicitor-treated Cupressus lusitanica cell culture and its relationships with reactive oxygen species (ROS) and nitric oxide (NO) production and hypersensitive cell death were investigated. • Superoxide anion radical (O2•-) induced cell death and inhibited β-thujaplicin accumulation, whereas hydrogen peroxide (H2O 2) induced β-thujaplicin accumulation but did not significantly affect cell death. Both elicitor and O2•- induced programmed cell death, which can be blocked by protease inhibitors, protein kinase inhibitors, and Ca2+ chelators. • Elicitor-induced NO generation was nitric oxide synthase (NOS)-dependent. Inhibition of NO generation by NOS inhibitors and NO scavenger partly blocked the elicitor-induced β-thujaplicin accumulation and cell death, and NO donors strongly induced cell death. • Interaction among NO, H2O 2, and O2•- shows that NO production and H2O2 production are interdependent, but NO and O 2•- accumulation were negatively related because of coconsumption of NO and O2•-. NO- and O 2•--induced cell death required each other, and both were required for elicitor-induced cell death. A direct interaction between NO and O2•- was implicated in the production of a potent oxidant peroxynitrite, which might mediate the elicitor-induced cell death.
AB - • β-Thujaplicin is a natural troponoid with strong antifungal, antiviral, and anticancer activities. β-Thujaplicin production in yeast elicitor-treated Cupressus lusitanica cell culture and its relationships with reactive oxygen species (ROS) and nitric oxide (NO) production and hypersensitive cell death were investigated. • Superoxide anion radical (O2•-) induced cell death and inhibited β-thujaplicin accumulation, whereas hydrogen peroxide (H2O 2) induced β-thujaplicin accumulation but did not significantly affect cell death. Both elicitor and O2•- induced programmed cell death, which can be blocked by protease inhibitors, protein kinase inhibitors, and Ca2+ chelators. • Elicitor-induced NO generation was nitric oxide synthase (NOS)-dependent. Inhibition of NO generation by NOS inhibitors and NO scavenger partly blocked the elicitor-induced β-thujaplicin accumulation and cell death, and NO donors strongly induced cell death. • Interaction among NO, H2O 2, and O2•- shows that NO production and H2O2 production are interdependent, but NO and O 2•- accumulation were negatively related because of coconsumption of NO and O2•-. NO- and O 2•--induced cell death required each other, and both were required for elicitor-induced cell death. A direct interaction between NO and O2•- was implicated in the production of a potent oxidant peroxynitrite, which might mediate the elicitor-induced cell death.
UR - http://www.scopus.com/inward/record.url?scp=34250861207&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34250861207&partnerID=8YFLogxK
U2 - 10.1111/j.1469-8137.2007.02109.x
DO - 10.1111/j.1469-8137.2007.02109.x
M3 - Article
C2 - 17587371
AN - SCOPUS:34250861207
SN - 0028-646X
VL - 175
SP - 215
EP - 229
JO - New Phytologist
JF - New Phytologist
IS - 2
ER -