TY - JOUR
T1 - Reaching movements of a redundant musculoskeletal arm
T2 - Acquisition of an adequate internal force by iterative learning and its evaluation through a dynamic damping ellipsoid
AU - Tahara, Kenji
AU - Kino, Hitoshi
N1 - Funding Information:
This work was partially supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (C) (20560249), and the Kyushu University Research Superstar Program, based on the budget of Kyushu University allocated under President’s initiative.
PY - 2010/4/14
Y1 - 2010/4/14
N2 - This paper presents a proposal of an iterative learning control method for a musculoskeletal arm to acquire adequate internal force in order to realize human-like natural movements. Additionally, a dynamic damping ellipsoid at the end-point is introduced to evaluate internal forces obtained through the iterative learning scheme. Our previous works presented that a human-like smooth reaching movement using a musculoskeletal redundant arm model can be achieved by introducing a nonlinear muscle model and 'the virtual spring-damper hypothesis'. However, to date, the internal forces have been determined heuristically. As described in this paper, to determine internal forces more systematically, an iterative learning control method is used for acquisition of an adequate dynamic damping ellipsoid according to a given task. It is presented that the learning control method can perform effectively to realize given tasks, even though strong nonlinear characteristics of the muscles exist. After acquiring a given task, the dynamic damping ellipsoid is introduced to evaluate the relation between a damping effect generated by the acquired internal forces and a trajectory of the end-point. Some numerical simulations are performed and the usefulness of the learning control strategy, despite strong nonlinearity, is demonstrated through these results.
AB - This paper presents a proposal of an iterative learning control method for a musculoskeletal arm to acquire adequate internal force in order to realize human-like natural movements. Additionally, a dynamic damping ellipsoid at the end-point is introduced to evaluate internal forces obtained through the iterative learning scheme. Our previous works presented that a human-like smooth reaching movement using a musculoskeletal redundant arm model can be achieved by introducing a nonlinear muscle model and 'the virtual spring-damper hypothesis'. However, to date, the internal forces have been determined heuristically. As described in this paper, to determine internal forces more systematically, an iterative learning control method is used for acquisition of an adequate dynamic damping ellipsoid according to a given task. It is presented that the learning control method can perform effectively to realize given tasks, even though strong nonlinear characteristics of the muscles exist. After acquiring a given task, the dynamic damping ellipsoid is introduced to evaluate the relation between a damping effect generated by the acquired internal forces and a trajectory of the end-point. Some numerical simulations are performed and the usefulness of the learning control strategy, despite strong nonlinearity, is demonstrated through these results.
UR - http://www.scopus.com/inward/record.url?scp=77951795957&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77951795957&partnerID=8YFLogxK
U2 - 10.1163/016918610X493615
DO - 10.1163/016918610X493615
M3 - Article
AN - SCOPUS:77951795957
SN - 0169-1864
VL - 24
SP - 783
EP - 818
JO - Advanced Robotics
JF - Advanced Robotics
IS - 5-6
ER -