Abstract
A kinematically complete quasifree (p,pn) experiment in inverse kinematics was performed to study the structure of the Borromean nucleus B17, which had long been considered to have a neutron halo. By analyzing the momentum distributions and exclusive cross sections, we obtained the spectroscopic factors for 1s1/2 and 0d5/2 orbitals, and a surprisingly small percentage of 9(2)% was determined for 1s1/2. Our finding of such a small 1s1/2 component and the halo features reported in prior experiments can be explained by the deformed relativistic Hartree-Bogoliubov theory in continuum, revealing a definite but not dominant neutron halo in B17. The present work gives the smallest s- or p-orbital component among known nuclei exhibiting halo features and implies that the dominant occupation of s or p orbitals is not a prerequisite for the occurrence of a neutron halo.
Original language | English |
---|---|
Article number | 082501 |
Journal | Physical review letters |
Volume | 126 |
Issue number | 8 |
DOIs | |
Publication status | Published - Feb 23 2021 |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy(all)