Proposal and evaluation of IO concentration-aware mechanisms to improve efficiency of hybrid storage systems

Kazuichi Oe, Takeshi Nanri

Research output: Contribution to journalArticlepeer-review


Hybrid storage techniques are useful methods to improve the cost performance for input-output (IO) intensive workloads. These techniques choose areas of concentrated IO accesses and migrate them to an upper tier to extract as much performance as possible through greater use of upper tier areas. Automated tiered storage with fast memory and slow flash storage (ATSMF) is a hybrid storage system situated between nonvolatile memories (NVMs) and solid-state drives (SSDs). ATSMF aims to reduce the average response time for IO accesses by migrating areas of concentrated IO access from an SSD to an NVM. When a concentrated IO access finishes, the system migrates these areas from the NVM back to the SSD. Unfortunately, the published ATSMF implementation temporarily consumes much NVM capacity upon migrating concentrated IO access areas to NVM, because its algorithm executes NVM migration with high priority. As a result, it often delays evicting areas in which IO concentrations have ended to the SSD. Therefore, to reduce the consumption of NVM while maintaining the average response time, we developed new techniques for making ATSMF more practical. The first is a queue handling technique based on the number of IO accesses for NVM migration and eviction. The second is an eviction method that selects only write-accessed partial regions in finished areas. The third is a technique for variable eviction timing to balance the NVM consumption and average response time. Experimental results indicate that the average response times of the proposed ATSMF are almost the same as those of the published ATSMF, while the NVM consumption is three times lower in best case.

Original languageEnglish
Pages (from-to)2109-2120
Number of pages12
JournalIEICE Transactions on Information and Systems
Issue number12
Publication statusPublished - 2021

All Science Journal Classification (ASJC) codes

  • Software
  • Hardware and Architecture
  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering
  • Artificial Intelligence


Dive into the research topics of 'Proposal and evaluation of IO concentration-aware mechanisms to improve efficiency of hybrid storage systems'. Together they form a unique fingerprint.

Cite this