Abstract
B-C-N nanotubes prepared by a plasma evaporation method were characterized by a transmission-electron microscopy (TEM) and an electron-energy-loss spectroscopy (EELS). The nanotubes obtained were divided into three types of carbon-, boron nitride-, and combined nanotubes of boron nitride with carbon. However, BCxN nanotubes of homogeneous phase could not be obtained. This indicated that a stable phase in the experimental condition was in the mixtures of carbon and boron nitride rather than in a homogeneous phase of BCxN compounds. Also the effect of temperatures on the formation of nanotubes was studied. Resultantly it was shown that nanotubes were formed at higher temperatures than 3000 K and, on the other hand, nanocapsules were formed at lower temperatures than 3000 K. Based on the microstructural data obtained, the formation mechanisms of both nanotubes and nanocapsules were described.
Original language | English |
---|---|
Pages (from-to) | 627-635 |
Number of pages | 9 |
Journal | Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy |
Volume | 47 |
Issue number | 6 |
DOIs | |
Publication status | Published - Jun 2000 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Mechanical Engineering
- Industrial and Manufacturing Engineering
- Metals and Alloys
- Materials Chemistry